Concept

Plan affine (structure d'incidence)

Résumé
Dans une approche axiomatique de la géométrie, il est possible de définir le plan comme une structure d'incidence, c'est-à-dire la donnée d'objets primitifs, les points et les droites (qui sont certains ensembles de ces points) et d'une relation, dite d'incidence, entre point et droite (qui est la relation d'appartenance du point à la droite). Un plan affine est alors une telle structure vérifiant les axiomes d'incidence : deux points A et B distincts sont incidents à une unique droite (notée (AB)) ; il existe au moins trois points non incidents à une même droite (autrement dit : trois points non alignés) ; pour toute droite d et tout point A non incident à d, il existe une unique droite d' incidente à A telle qu'aucun point ne soit incident aux deux droites d et d (autrement dit : une droite d passant par A et disjointe de d). Il est également possible de définir un plan affine comme espace affine de dimension 2 sur un corps. Tout plan affine sur un corps, comme le plan affine réel usuel, est un plan affine en tant que structure d'incidence, au sens où ses points et ses droites, et la relation d'appartenance d'un point à une droite, satisfont les axiomes d'incidence. Mais ces deux définitions ne coïncident pas : un axiome supplémentaire, l'axiome de Desargues, est nécessaire pour cela (voir plan affine arguésien). Les plans affines, satisfaisant donc les axiomes d'incidence, mais ne satisfaisant pas l'axiome de Desargues, sont dits non arguésiens. Dans cette approche, deux droites sont dites parallèles si elles sont égales ou disjointes. L'unicité d'une droite incidente à deux points distincts implique que deux droites non parallèles n'ont qu'un point commun. On a donc la dichotomie suivante : ou bien deux droites sont parallèles ; ou bien elles s'intersectent en un unique point. Le troisième axiome se reformule par l'existence et l'unicité d'une parallèle à une droite donnée passant par un point donné (y compris lorsque le point appartient à la droite, d'après la dichotomie ci-dessus).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.