Forme (géométrie)En géométrie classique, la forme permet d’identifier ou de distinguer des figures selon qu’elles peuvent ou non être obtenues les unes à partir des autres par des transformations géométriques qui préservent les angles en multipliant toutes les longueurs par un même coefficient d’agrandissement. Au sens commun, la forme d’une figure est en général décrite par la donnée combinatoire d’un nombre fini de points et de segments ou d’autres courbes délimitant des surfaces, des comparaisons de longueurs ou d’angles, d’éventuels angles droits et éventuellement du sens de courbure.
Parallélisme (géométrie)En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. La notion de parallélisme est introduite dans le Livre I des Éléments d'Euclide. Pour Euclide, une droite s'apparente plutôt à un segment.
Géométrie finieUne géométrie finie est un système géométrique dont les points sont en nombre fini. La géométrie euclidienne usuelle n'est pas finie, une droite euclidienne possédant une infinité de points. Une géométrie basée sur les images affichées sur un écran d'ordinateur, où les pixels sont considérés comme des points, serait une géométrie finie. Bien qu'il existe de nombreux systèmes que l'on pourrait appeler des géométries finies, on porte principalement l'attention sur les espaces projectifs et affines finis en raison de leur régularité et de leur simplicité.
Groupe affineLes automorphismes d'un espace affine A constituent un groupe appelé groupe affine de A et noté GA(A). En notant E l'espace vectoriel qui dirige A, l'application qui à tout automorphisme u de A fait correspondre l'automorphisme f de E associé à u est un morphisme du groupe affine GA(A) dans le groupe linéaire GL(E). Son noyau forme le groupe des translations. GA(A) est isomorphe au produit semi-direct du groupe additif de E par GL(E). Il est donc engendré par les translations, les transvections et les dilatations.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Application projectiveEn mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .
Géométrie absolueLa géométrie absolue (parfois appelée géométrie neutre) est une géométrie basée sur le système d'axiomes de la géométrie euclidienne, privé de l'axiome des parallèles ou de sa négation. Elle est formée des résultats qui sont vrais à la fois en géométrie euclidienne et en géométrie hyperbolique, parfois énoncés sous une forme affaiblie par rapport à l'énoncé euclidien traditionnel. La géométrie absolue fut introduite (sous ce nom) par János Bolyai en 1832 ; le terme de géométrie neutre (sous-entendu par rapport à l'axiome des parallèles) lui a été parfois préféré, pour éviter de donner l'impression que toute autre géométrie en découle.
Playfair's axiomIn geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate): In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point. It is equivalent to Euclid's parallel postulate in the context of Euclidean geometry and was named after the Scottish mathematician John Playfair. The "at most" clause is all that is needed since it can be proved from the remaining axioms that at least one parallel line exists.
Hyperplane at infinityIn geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. Similarly, starting from an affine space A, every class of parallel lines can be associated with a point at infinity.
TransvectionUne transvection est une transformation géométrique. Cet article est à lire en parallèle avec celui sur les dilatations. Image:france1.gif|Dessin d'origine Image:france transvection.gif|Résultat d'une transvection Soient f un endomorphisme d'un espace vectoriel E, H = Ker(f – id) l'ensemble des vecteurs invariants, et D = Im(f – id) (d'après le théorème du rang, dim(H) + dim(D) = dim(E)).