Supernova à effondrement de cœurvignette|upright=1.3|Représentation d'artiste de SN 1987A. La supernova à effondrement de cœur est l'un des deux principaux mécanismes de formation de supernova, l'autre étant la supernova thermonucléaire (). Les types spectraux correspondants sont le , le (si l'étoile a perdu son enveloppe d'hydrogène) ou le (si l'étoile a perdu ses enveloppes d'hydrogène et d'hélium). Ce type de supernova correspond à l'expulsion violente des couches externes des étoiles massives (à partir de ) en fin de vie.
SN 1987Aest une supernova du Grand Nuage de Magellan, une galaxie naine proche de la Voie lactée visible depuis l'hémisphère sud. Les premières observations du phénomène ont été faites quelques heures à peine après que son éclat eut atteint la Terre, dans la nuit du par plusieurs astronomes amateurs et professionnels d'Amérique du Sud, d'Australie et de Nouvelle-Zélande. s'avère être la première explosion de supernova observée à l'œil nu durant le , avec des conditions d'observation quasi-optimales.
Fusion du siliciumEn astrophysique, la fusion du silicium (parfois appelée improprement combustion du silicium) est une phase de fusion nucléaire de quelques semaines (typiquement une à trois semaines) de la fin de vie d'une étoile d'au moins 8 masses solaires. Cette phase commence lorsque ces étoiles ont épuisé tous les combustibles de la séquence principale du diagramme de Hertzsprung-Russell (hydrogène, hélium, carbone, néon, oxygène, magnésium...), ce qui contracte leur cœur jusqu'à le porter à une température de 2,7 à 3,5 GK — la température dépendant de la masse de l'étoile.
Isotopethumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Abondance des éléments chimiquesredresse=2|vignette|Courbe d'abondance relative des éléments chimiques dans l'Univers. On observe la forme globale en dents de scie, l'abondance prépondérante de H et He, l'abondance extrêmement faible de Li, Be et B par rapport à celle des éléments voisins C, N et O, le pic du fer, et l'abondance élevée de Pb. vignette|redresse=1.7|Au cœur d'une étoile massive, s'élaborent des atomes de plus en plus lourds. Cette étoile développe une structure en « pelures d'oignon », dans laquelle chaque couche est composée des « cendres » de la réaction nucléaire précédente.
Supernova neutrinosSupernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10MeV.
Nucléosynthèse stellaireLa nucléosynthèse stellaire est le terme utilisé en astrophysique pour désigner l'ensemble des réactions nucléaires qui se produisent à l'intérieur des étoiles (fusion nucléaire et processus s) ou pendant leur destruction explosive (processus r, p, rp) et dont le résultat est la synthèse de la plupart des noyaux atomiques. La position d'une étoile sur le diagramme de Hertzsprung-Russell détermine en grande partie les éléments qu'elle synthétise. L'origine des éléments a posé un problème difficile aux scientifiques pendant longtemps.
Endothermic processIn thermochemistry, an endothermic process () is any thermodynamic process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system. Thus, an endothermic reaction generally leads to an increase in the temperature of the system and a decrease in that of the surroundings. It may be a chemical process, such as dissolving ammonium nitrate () in water (), or a physical process, such as the melting of ice cubes.
Fusion d'étoiles à neutronsvignette|240px|17 août 2017 : détection d'une onde gravitationnelle émise par la fusion de deux étoiles à neutrons (évènement GW170817) (vue d'artiste, vidéo de ). Une fusion d'étoiles à neutrons est un type particulier de collision stellaire. Elle génère des ondes gravitationnelles et des sursauts gamma, et produit par processus r des noyaux atomiques lourds (de numéro atomique supérieur à celui du fer). La fusion de deux étoiles à neutrons se produit de la même façon que la collision de deux naines blanches (à l'origine d'une petite fraction des supernovas de type Ia).
Nucléosynthèse primordialeLa nucléosynthèse primordiale (BBN, pour l'anglais Big Bang nucleosynthesis) est un événement de nucléosynthèse (c'est-à-dire de synthèse de noyaux atomiques) qui, selon la théorie du Big Bang, s'est déroulé dans tout l'Univers pendant les premières dizaines de minutes de son histoire (dans un intervalle de temps compris entre et ). La nucléosynthèse primordiale a produit l'essentiel du deutérium, de l'hélium 3 et de l'hélium, et une faible proportion de lithium, de béryllium et de bore.