Couvre les méthodes de variation, les formes d'équilibre, l'élastique d'Euler et les méthodes numériques et analytiques pour résoudre l'élastique d'Euler.
Explore la technique Blow up in Variations, en soulignant son rôle dans l'établissement de la limite et la vérification des propriétés fractionnaires intégrales.
Explore le calcul des variations et l'Elastica d'Euler dans le contexte de l'équilibre de la poutre et des courbes élastiques inextensibles sous de grandes rotations.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Explore les principes et les applications du calcul des variations, en se concentrant sur la limite uniforme et l'équi-intégrabilité des integrands de Carathéodory.