Intersection numberIn mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of the x- and y-axes in a plane, which should be one.
Six operationsIn mathematics, Grothendieck's six operations, named after Alexander Grothendieck, is a formalism in homological algebra, also known as the six-functor formalism. It originally sprang from the relations in étale cohomology that arise from a morphism of schemes f : X → Y. The basic insight was that many of the elementary facts relating cohomology on X and Y were formal consequences of a small number of axioms. These axioms hold in many cases completely unrelated to the original context, and therefore the formal consequences also hold.
Éléments de géométrie algébriqueLes Éléments de géométrie algébrique, par Alexandre Grothendieck (rédigés avec la collaboration de Jean Dieudonné), ou EGA en abrégé, sont un traité inachevé de pages, en français, sur la géométrie algébrique, qui a été publié (en huit parties ou fascicules) entre 1960 et 1967 par l'Institut des hautes études scientifiques. Grothendieck tente d'y établir systématiquement les fondements de la géométrie algébrique, et y construit le concept des schémas, et le définit.
Nerf d'un recouvrementEn mathématiques, le nerf d'un recouvrement est un complexe simplicial abstrait associé à un recouvrement ouvert d'un espace topologique. Il peut éventuellement intervenir dans la définition de la cohomologie de Čech d'un faisceau. Un recouvrement ouvert d'un espace topologique E est un ensemble U d'ouverts de E dont la réunion est E. Son nerf est l'ensemble des parties finies non vides J de U telles que Supposons que le recouvrement est localement fini, et que les intersections sont toutes contractiles.