Concept

Intégrale trigonométrique

En mathématiques, les intégrales trigonométriques sont une famille d'intégrales basées sur les fonctions trigonométriques. Sinus intégral Il existe deux fonctions sinus intégrales : On peut remarquer que l'intégrande sin(t)/t est la fonction sinus cardinal, et la fonction de Bessel sphérique d'ordre 0. Puisque sinc est une fonction entière paire (holomorphe sur tout le plan complexe), Si est entière, impaire, et l'intégrale dans sa définition peut être calculée le long de tout chemin reliant les extrémités. Par définition, Si(x) et la primitive de sin x / x qui s'annule en x = 0, et si(x) est celle qui s'annule pour x → ∞. Leur différence est donnée par l'intégrale de Dirichlet : En traitement du signal, les oscillations du sinus intégral génèrent des suroscillations en utilisant le filtre sinus cardinal, et des suroscillations fréquentielles en utilisant un filtre sinus cardinal tronqué comme filtre passe-bas. Ce phénomène est en lien avec le phénomène de Gibbs : si le sinus intégral est considéré comme la convolution de la fonction sinus cardinal avec la fonction de Heaviside, cela revient à tronquer la série de Fourier, d'où l'apparition du phénomène de Gibbs. Cosinus intégral Il existe deux fonctions cosinus intégrales : où γ ≈ 0.57721566 ... est la constante d'Euler-Mascheroni. Certains textes utilisent la notation ci au lieu de Ci. Ci(x) est la primitive de cos(x)/x qui s'annule pour x → ∞. Cin est une fonction entière paire. Pour cela, certains auteurs préfèrent définir Cin puis en déduire Ci. Trigonométrie hyperbolique Le sinus hyperbolique intégral est défini par On peut la relier à la fonction sinus intégral par l'égalité : Le cosinus hyperbolique intégral est défini par où est la constante d'Euler-Mascheroni. Il a pour développement limité Les intégrales trigonométriques peuvent être vues en termes de "fonctions auxiliaires" A partir de ces fonctions, les intégrales trigonométriques peuvent être réécrites en (cf. Abramowitz & Stegun, p.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Afficher plus
Séances de cours associées (121)
Calculs à deux boucles: Jambes externes et propagateurs internes
Couvre le calcul de diagrammes à deux boucles avec des jambes externes et des propagateurs internes.
Intégrales de Fresnel : Intégrales curvilignes en R2
Explore les intégrales de Fresnel à travers les intégrales curvilignes dans R2, en se concentrant sur les fonctions cos(x2-y) et sin(x).
Symétrie dans les éléments intégraux et matriciels
Explore le concept de symétrie dans les intégrales et les éléments matriciels.
Afficher plus
Publications associées (49)

BPS invariants from p-adic integrals

Dimitri Stelio Wyss, Francesca Carocci, Giulio Orecchia

We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
Cambridge Univ Press2024

An optimal preconditioned FFT-accelerated finite element solver for homogenization

Till Junge, Ali Falsafi, Martin Ladecký

We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...
ELSEVIER SCIENCE INC2023

On the Use of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions for the Calculation of Infinite Sums and the Analysis of Zeroes of Analytical Functions

Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
MDPI2023
Afficher plus
Concepts associés (5)
Phénomène de Gibbs
En mathématiques, lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux. Le phénomène fut mis pour la première fois en évidence en 1848 par Henry Wilbraham, mais cette découverte ne connut guère d'écho.
Sinus cardinal
En mathématiques, la fonction sinus cardinal est une fonction définie à partir de la fonction trigonométrique sinus apparaissant fréquemment dans des problèmes de physique ondulatoire. La fonction sinus cardinal est définie par : où sin désigne la fonction sinus. Il existe une autre définition couramment utilisée : Quand une confusion pourra être possible, on notera par la suite sinc (resp. sinc) la première (et respectivement la seconde) version de la fonction. La seconde est parfois nommée sinus cardinal normalisé.
Ringing artifacts
In signal processing, particularly , ringing artifacts are artifacts that appear as spurious signals near sharp transitions in a signal. Visually, they appear as bands or "ghosts" near edges; audibly, they appear as "echos" near transients, particularly sounds from percussion instruments; most noticeable are the pre-echos. The term "ringing" is because the output signal oscillates at a fading rate around a sharp transition in the input, similar to a bell after being struck.
Afficher plus
MOOCs associés (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.