Le gaz neuronal est un réseau de neurones artificiel, inspiré des cartes autoadaptatives, et introduites en 1991 par Thomas Martinetz et Klaus Schulten. Le gaz neuronal est un algorithme simple pour trouver une représentation optimale de données à partir de vecteurs principaux. La méthode fut appelée "gaz neuronal" parce que l'évolution des vecteurs principaux durant l'étape d'apprentissage fait penser à un gaz qui occupe un espace de façon uniforme. Cet algorithme est appliqué à la compression de données ou à la quantification vectorielle, par exemple en reconnaissance des langues naturelles, en ou à la reconnaissance de motifs. En tant qu'alternative robuste et convergente à l'algorithme K-moyennes, il peut être utilisé pour le partitionnement de données. Soit une distribution de probabilité P(x) sur des vecteurs x (les données), et un nombre fini de vecteurs principaux wi, i=1, ..., N. À chaque étape de temps t (discret), un vecteur d'entrée x est tiré aléatoirement selon la loi P, afin d'être présenté à l'algorithme. Ensuite, les vecteurs principaux sont classés du plus proche au plus lointain de ce vecteur x : i0 sera l'indice du vecteur principal le plus proche de x, i1 l'indice du second plus proche, etc, et iN-1 représente l'indice du vecteur principal le plus éloigné de x. Enfin, chaque vecteur principal (k = 0, ..., N-1) est adapté selon la règle, dépendante de k, que voici : avec ε le taux d'adaptation, et λ la taille du voisinage. Pour assurer la convergence, il est nécessaire que ε et λ soit décroissant en fonction de t (ie. décroisse quand t augmente). Après un nombre suffisant d'étapes d'adaptation, les vecteurs principaux recouvrent (et représentent) l'espace de données avec une erreur de représentation minimum (ou presque minimale). L'étape d'adaptation présente dans l'algorithme de gaz neuronal peut être interprétée comme une descente de gradient d'une fonction de coût.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (22)
Personnes associées (1)
Concepts associés (2)
Competitive learning
Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. A variant of Hebbian learning, competitive learning works by increasing the specialization of each node in the network. It is well suited to finding clusters within data. Models and algorithms based on the principle of competitive learning include vector quantization and self-organizing maps (Kohonen maps).
Carte autoadaptative
Les cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.