A conserved quantity is a property or value that remains constant over time in a system even while changes occur in the system. In mathematics, a conserved quantity of a dynamical system is formally defined as a function of the dependent variables, the value of which remains constant along each trajectory of the system. Not all systems have conserved quantities, and conserved quantities are not unique, since one can always produce another such quantity by applying a suitable function, such as adding a constant, to a conserved quantity. Since many laws of physics express some kind of conservation, conserved quantities commonly exist in mathematical models of physical systems. For example, any classical mechanics model will have mechanical energy as a conserved quantity as long as the forces involved are conservative. For a first order system of differential equations where bold indicates vector quantities, a scalar-valued function H(r) is a conserved quantity of the system if, for all time and initial conditions in some specific domain, Note that by using the multivariate chain rule, so that the definition may be written as which contains information specific to the system and can be helpful in finding conserved quantities, or establishing whether or not a conserved quantity exists. For a system defined by the Hamiltonian , a function f of the generalized coordinates q and generalized momenta p has time evolution and hence is conserved if and only if . Here denotes the Poisson bracket. Suppose a system is defined by the Lagrangian L with generalized coordinates q. If L has no explicit time dependence (so ), then the energy E defined by is conserved. Furthermore, if , then q is said to be a cyclic coordinate and the generalized momentum p defined by is conserved. This may be derived by using the Euler–Lagrange equations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.