In mathematics, the Bessel potential is a potential (named after Friedrich Wilhelm Bessel) similar to the Riesz potential but with better decay properties at infinity. If s is a complex number with positive real part then the Bessel potential of order s is the operator where Δ is the Laplace operator and the fractional power is defined using Fourier transforms. Yukawa potentials are particular cases of Bessel potentials for in the 3-dimensional space. The Bessel potential acts by multiplication on the Fourier transforms: for each When , the Bessel potential on can be represented by where the Bessel kernel is defined for by the integral formula Here denotes the Gamma function. The Bessel kernel can also be represented for by This last expression can be more succinctly written in terms of a modified Bessel function, for which the potential gets its name: At the origin, one has as , In particular, when the Bessel potential behaves asymptotically as the Riesz potential.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.