Ground expressionIn mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables. In first-order logic with identity with constant symbols and , the sentence is a ground formula. A ground expression is a ground term or ground formula. Consider the following expressions in first order logic over a signature containing the constant symbols and for the numbers 0 and 1, respectively, a unary function symbol for the successor function and a binary function symbol for addition.
Algèbre des termesEn logique mathématique, l'algèbre des termes est la structure algébrique libre sur une signature. Si la signature ne contient qu'un symbole de fonction binaire f, alors l'algèbre des termes sur un ensemble de variables X est exactement le magma libre sur X. Si x, y, z sont des variables de X, cette algèbre des termes contient les éléments suivants : x, y, z, f(x, x), f(x, f(x, y)), f(f(f(y, f(x), f(z, z)), y, x), etc. Le problème de décision associé à l'algèbre des termes est décidable et non élémentaire.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Formule atomiqueEn logique mathématique, une formule atomique ou atome est une formule qui ne contient pas de sous-formules propres. La structure d'une formule atomique dépend de la logique considérée, p. ex. en logique des propositions, les formules atomiques sont les variables propositionnelles. Les atomes sont les formules les plus simples dans un système logique et servent à construire les formules les plus générales.
Réécriture (informatique)En informatique théorique, la réécriture (ou récriture) est un modèle de calcul dans lequel il s’agit de transformer des objets syntaxiques (mots, termes, lambda-termes, programmes, preuves, graphes, etc.) en appliquant des règles bien précises. La réécriture est utilisée en informatique, en algèbre, en logique mathématique et en linguistique. La réécriture est utilisée en pratique pour la gestion des courriers électroniques (dans le logiciel sendmail, les entêtes de courrier sont manipulées par des systèmes de réécriture) ou la génération et l'optimisation de code dans les compilateurs.
Unificationvignette|Unifier deux termes, c'est les rendre identiques en remplaçant les variables. En informatique et en logique, l'unification est un processus algorithmique qui, étant donnés deux termes, trouve une substitution qui appliquée aux deux termes les rend identiques. Par exemple, et peuvent être rendus identiques par la substitution et , qui donne quand on l'applique à chacun de ces termes le terme .
Substitution (logic)A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a substitution instance, or instance for short, of the original expression. Where ψ and φ represent formulas of propositional logic, ψ is a substitution instance of φ if and only if ψ may be obtained from φ by substituting formulas for symbols in φ, replacing each occurrence of the same symbol by an occurrence of the same formula.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Atomic sentenceIn logic and analytic philosophy, an atomic sentence is a type of declarative sentence which is either true or false (may also be referred to as a proposition, statement or truthbearer) and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid" is a molecular sentence in natural language. From a logical analysis point of view, the truth or falsity of sentences in general is determined by only two things: the logical form of the sentence and the truth or falsity of its simple sentences.