Résumé
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term. In model theory, atomic formulas are merely strings of symbols with a given signature, which may or may not be satisfiable with respect to a given model. The well-formed terms and propositions of ordinary first-order logic have the following syntax: Terms: that is, a term is recursively defined to be a constant c (a named object from the domain of discourse), or a variable x (ranging over the objects in the domain of discourse), or an n-ary function f whose arguments are terms tk. Functions map tuples of objects to objects. Propositions: that is, a proposition is recursively defined to be an n-ary predicate P whose arguments are terms tk, or an expression composed of logical connectives (and, or) and quantifiers (for-all, there-exists) used with other propositions. An atomic formula or atom is simply a predicate applied to a tuple of terms; that is, an atomic formula is a formula of the form P (t1 ,..., tn) for P a predicate, and the tn terms. All other well-formed formulae are obtained by composing atoms with logical connectives and quantifiers. For example, the formula ∀x. P (x) ∧ ∃y. Q (y, f (x)) ∨ ∃z. R (z) contains the atoms As there are no quantifiers appearing in an atomic formula, all occurrences of variable symbols in an atomic formula are free.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.