CS-448: Sublinear algorithms for big data analysisIn this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
MATH-602: Inference on graphsThe class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,