Concept

Graded poset

In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties: The rank function is compatible with the ordering, meaning that for all x and y in the order, if x < y then ρ(x) < ρ(y), and The rank is consistent with the covering relation of the ordering, meaning that for all x and y, if y covers x then ρ(y) = ρ(x) + 1. The value of the rank function for an element of the poset is called its rank. Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram. Some examples of graded posets (with the rank function in parentheses) are: the natural numbers N with their usual order (rank: the number itself), or some interval [0, N] of this poset, Nn, with the product order (sum of the components), or a subposet of it that is a product of intervals, the positive integers, ordered by divisibility (number of prime factors, counted with multiplicity), or a subposet of it formed by the divisors of a fixed N, the Boolean lattice of finite subsets of a set (number of elements of the subset), the lattice of partitions of a set into finitely many parts, ordered by reverse refinement (number of parts), the lattice of partitions of a finite set X, ordered by refinement (number of elements of X minus number of parts), a group and a generating set, or equivalently its Cayley graph, ordered by the weak or strong Bruhat order, and ranked by word length (length of shortest reduced word).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.