Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The Boolean lattice (2[n],subset of) is the family of all subsets of [n]={1,MIDLINE HORIZONTAL ELLIPSIS,n}, ordered by inclusion. Let P be a partially ordered set. We prove that if n is sufficiently large, then there exists a packing P of copies of P in (2[n],subset of) that covers almost every element of 2[n]: P might not cover the minimum and maximum of 2[n], and at most |P|-1 additional points due to divisibility. In particular, if |P| divides 2n-2, then the truncated Boolean lattice 2[n]-{ null ,[n]} can be partitioned into copies of P. This confirms a conjecture of Lonc from 1991.
,