Publications associées (55)

On distributional autoregression and iterated transportation

Victor Panaretos, Laya Ghodrati

We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
Hoboken2024

Iterative removal of sources to model the turbulent electromotive force

Abhijit Bhausaheb Bendre

We describe a novel method to compute the components of dynamo tensors from direct magnetohydrodynamic (MHD) simulations. Our method relies upon an extension and generalization of the standard H & ouml;gbom CLEAN algorithm widely used in radio astronomy to ...
Oxford Univ Press2024

Bayes-optimal Learning of Deep Random Networks of Extensive-width

Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui

We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
2023

Distributional Regression and Autoregression via Optimal Transport

Laya Ghodrati

We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd\R^d. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
EPFL2023

Neural controlled differential equations for crop classification

Accurate and scalable crop classification is important for food security and sustainable resources management. The temporal development of crops, i.e., their phenology, is a continuous phenomena that if properly captured, can help to discern them. The nove ...
2021

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.