vignette|Densité de probabilité d'une loi normale de moyenne μ et d'écart-type σ. On montre ici les trois quartiles Q1, Q2, Q3. L'aire sous la courbe rouge est la même dans les intervalles (−∞,Q1), (Q1,Q2), (Q2,Q3), et (Q3,+∞). La probabilité d'être dans chacun de ces intervalles est de 25%. En statistiques et en théorie des probabilités, les quantiles sont les valeurs qui divisent un jeu de données en intervalles de même probabilité égale. Il y a donc un quantile de moins que le nombre de groupes créés. Par exemple, les quartiles sont les trois quantiles qui divisent un ensemble de données en quatre groupes de même probabilité. La médiane quant à elle est le quantile qui sépare le jeu de données en deux groupes de même probabilité. Les quantiles d'une variable aléatoire univariée, discrète (ex. : entière) ou continue (réelle), sont les valeurs que prend la variable pour des valeurs de probabilité sous le quantile considéré, valant une valeur remarquable, par exemple 3 dixièmes, ou 5 centièmes, etc. On les appelle encore fractiles, synonyme complet selon le contexte d'usage, et ce sont les valeurs réciproques de la fonction de répartition de la loi de probabilité considérée. On s'intéresse plus particulièrement à quelques jeux de valeurs de quantile correspondant aux multiples de fractions simples du 100 % de la probabilité totale. Par exemple, on peut scinder les 100 % de probabilité totale en 4 masses de probabilités égales chacune à =25 %, correspondant, pour les valeurs de la variable aléatoire, à quatre intervalles adjacents. Les trois valeurs intermédiaires définissent ainsi, respectivement les fractiles de =0,25, =0,5 et =0,75, ou encore en termes de fractions, les quantiles d'un quart, un demi et trois quarts (les deux limites extrêmes, l'inférieure correspondant au quantile de 0 et la supérieure pour le quantile de 1, sont les bornes du domaine de définition de la variable aléatoire. Les quantiles d'un échantillon statistique de nombres sont des valeurs remarquables permettant de diviser le jeu de ces données ordonnées (i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (21)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
MATH-234(d): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
Afficher plus
Publications associées (31)
Concepts associés (22)
Centile
thumb|Définition du 95e centile d'une loi de Fisher-Snedecor En statistique descriptive, un centile (ou percentile) est une des 99 valeurs qui divisent une distribution de données en 100 parts égales de sorte que le p-ième centile soit la valeur supérieure à p % des autres valeurs. Les centiles sont un cas particulier des quantiles. Voir l'article "quantile" pour les méthodes. Un centile est calculé en tant que 100-quantile.
Intervalle de confiance
vignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Loi exponentielle
Une loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.