Régularisation (physique)En physique théorique, la régularisation est une procédure ad-hoc qui consiste à modifier une grandeur physique qui présente une singularité afin de la rendre régulière. La régularisation est par exemple abondamment utilisée en théorie quantique des champs en relation avec la procédure de renormalisation, ainsi qu'en relativité générale pour le calcul du problème à deux corps en paramétrisation post-newtonienne. Le potentiel newtonien en coordonnées sphériques s'écrit : où k est une constante.
Background independenceBackground independence is a condition in theoretical physics that requires the defining equations of a theory to be independent of the actual shape of the spacetime and the value of various fields within the spacetime. In particular this means that it must be possible not to refer to a specific coordinate system—the theory must be coordinate-free. In addition, the different spacetime configurations (or backgrounds) should be obtained as different solutions of the underlying equations.
Induced gravityInduced gravity (or emergent gravity) is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967. Sakharov observed that many condensed matter systems give rise to emergent phenomena that are analogous to general relativity. For example, crystal defects can look like curvature and torsion in an Einstein–Cartan spacetime.
Group field theoryGroup field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields).
Penrose interpretationThe Penrose interpretation is a speculation by Roger Penrose about the relationship between quantum mechanics and general relativity. Penrose proposes that a quantum state remains in superposition until the difference of space-time curvature attains a significant level. Penrose's idea is inspired by quantum gravity, because it uses both the physical constants and .
Marécage (physique)En physique, le terme marécage () fait référence à des théories physiques efficaces à basse énergie qui ne sont pas compatibles avec la théorie des cordes, contrairement au « » des théories compatibles avec elle. En d'autres termes, le marécage est l'ensemble des théories d'apparence cohérente sans cohérente dans la théorie des cordes. Les développements de la théorie des cordes suggèrent que le paysage de la théorie des cordes des faux vides est vaste.
Ashtekar variablesIn the ADM formulation of general relativity, spacetime is split into spatial slices and a time axis. The basic variables are taken to be the induced metric on the spatial slice and the metric's conjugate momentum , which is related to the extrinsic curvature and is a measure of how the induced metric evolves in time. These are the metric canonical coordinates. In 1986 Abhay Ashtekar introduced a new set of canonical variables, Ashtekar (new) variables to represent an unusual way of rewriting the metric canonical variables on the three-dimensional spatial slices in terms of an SU(2) gauge field and its complementary variable.
Effet UnruhL'effet Unruh, parfois aussi appelé radiation de Fulling-Davies-Unruh, prédit qu'un observateur en mouvement uniformément accéléré observera un rayonnement de corps noir, là où un observateur dans un référentiel inertiel n'en verra pas. Autrement dit, l'observateur en mouvement uniformément accéléré se retrouvera dans un environnement chaud à une température T. Il fut découvert (théoriquement) en 1976 par William Unruh de l'université de la Colombie-Britannique, mais n'a pas encore été mis expérimentalement en évidence.