En physique théorique, la régularisation est une procédure ad-hoc qui consiste à modifier une grandeur physique qui présente une singularité afin de la rendre régulière. La régularisation est par exemple abondamment utilisée en théorie quantique des champs en relation avec la procédure de renormalisation, ainsi qu'en relativité générale pour le calcul du problème à deux corps en paramétrisation post-newtonienne.
Le potentiel newtonien en coordonnées sphériques s'écrit :
où k est une constante. Cette expression présente une singularité à l'origine : elle devient en effet infinie en r = 0. On peut la régulariser en introduisant une famille à un paramètre :
Cette expression reste bien définie en r = 0, car pour tout , on a :
Les calculs de processus de diffusion en théorie quantique des champs perturbative font apparaître des intégrales divergentes dès l'ordre d'une boucle. Pour donner un sens à ces intégrales, plusieurs méthodes sont utilisées.
Initialement, l'espace-temps physique réel possède une dimension d = 4. La régularisation dimensionnelle consiste en un prolongement analytique de l'intégrale divergente pour des dimensions d'espace-temps d complexes, la fonction obtenue étant méromorphe. Il est alors possible d'étudier la nature de la singularité en d = 4 afin de procéder à une renormalisation par soustraction du terme divergent. La méthode, qui respecte l'unitarité, la causalité et l'invariance de jauge, a été introduite en par t'Hooft & Veltman, Bollini & Giambiagi, et Ashmore.
Considérons par exemple l'intégrale typique suivante, correspondant à la somme sur la quadri-impulsion p dans une boucle :
où est la fonction gamma d'Euler. Pour étudier la singularité en d = 4, on pose : et on fait un développement asymptotique en zéro :
où est la constante d'Euler-Mascheroni. On en déduit que l'intégrale présente un pôle simple en d = 4 :
Cette méthode consiste à rajouter des particules fictives de masse M à la théorie initiale ; on étudie alors la limite M tendant vers l'infini.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.
NOTOC In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini as well as – independently and more comprehensively – by 't Hooft and Veltman for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number of spacetime dimensions. Dimensional regularization writes a Feynman integral as an integral depending on the spacetime dimension d and the squared distances (xi−xj)2 of the spacetime points xi, .
En analyse fonctionnelle, la régularisation zêta est une méthode de régularisation des déterminants d'opérateurs qui apparaissent lors de calculs d'intégrales de chemins en théorie quantique des champs. Soit un domaine compact de à bord . Sur ce domaine, on considère l'opérateur positif , où est le Laplacien, muni de conditions aux limites sur le bord du domaine (Dirichlet, Neumann, mixtes) qui précisent complètement le problème.
En physique, un propagateur est une fonction de Green particulière utilisée en électrodynamique quantique, qui peut être interprétée comme l'amplitude de probabilité pour qu'une particule élémentaire se déplace d'un endroit à un autre dans un temps donné. Le terme propagateur a été introduit en physique par Feynman en 1948 pour sa formulation de la mécanique quantique en intégrales de chemin, une nouvelle approche de la quantification centrée sur le Lagrangien, contrairement à la procédure habituelle de quantification canonique fondée sur le hamiltonien.
Catastrophic overfitting (CO) in single-step adversarial training (AT) results in abrupt drops in the adversarial test accuracy (even down to 0%). For models trained with multi-step AT, it has been observed that the loss function behaves locally linearly w ...
The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...
This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposi ...