En physique théorique, la régularisation est une procédure ad-hoc qui consiste à modifier une grandeur physique qui présente une singularité afin de la rendre régulière. La régularisation est par exemple abondamment utilisée en théorie quantique des champs en relation avec la procédure de renormalisation, ainsi qu'en relativité générale pour le calcul du problème à deux corps en paramétrisation post-newtonienne. Le potentiel newtonien en coordonnées sphériques s'écrit : où k est une constante. Cette expression présente une singularité à l'origine : elle devient en effet infinie en r = 0. On peut la régulariser en introduisant une famille à un paramètre : Cette expression reste bien définie en r = 0, car pour tout , on a : Les calculs de processus de diffusion en théorie quantique des champs perturbative font apparaître des intégrales divergentes dès l'ordre d'une boucle. Pour donner un sens à ces intégrales, plusieurs méthodes sont utilisées. Initialement, l'espace-temps physique réel possède une dimension d = 4. La régularisation dimensionnelle consiste en un prolongement analytique de l'intégrale divergente pour des dimensions d'espace-temps d complexes, la fonction obtenue étant méromorphe. Il est alors possible d'étudier la nature de la singularité en d = 4 afin de procéder à une renormalisation par soustraction du terme divergent. La méthode, qui respecte l'unitarité, la causalité et l'invariance de jauge, a été introduite en par t'Hooft & Veltman, Bollini & Giambiagi, et Ashmore. Considérons par exemple l'intégrale typique suivante, correspondant à la somme sur la quadri-impulsion p dans une boucle : où est la fonction gamma d'Euler. Pour étudier la singularité en d = 4, on pose : et on fait un développement asymptotique en zéro : où est la constante d'Euler-Mascheroni. On en déduit que l'intégrale présente un pôle simple en d = 4 : Cette méthode consiste à rajouter des particules fictives de masse M à la théorie initiale ; on étudie alors la limite M tendant vers l'infini.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (62)
Concepts associés (16)
Dimensional regularization
NOTOC In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini as well as – independently and more comprehensively – by 't Hooft and Veltman for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number of spacetime dimensions. Dimensional regularization writes a Feynman integral as an integral depending on the spacetime dimension d and the squared distances (xi−xj)2 of the spacetime points xi, .
Régularisation zêta
En analyse fonctionnelle, la régularisation zêta est une méthode de régularisation des déterminants d'opérateurs qui apparaissent lors de calculs d'intégrales de chemins en théorie quantique des champs. Soit un domaine compact de à bord . Sur ce domaine, on considère l'opérateur positif , où est le Laplacien, muni de conditions aux limites sur le bord du domaine (Dirichlet, Neumann, mixtes) qui précisent complètement le problème.
Propagateur de l'équation de Schrödinger
En physique, un propagateur est une fonction de Green particulière utilisée en électrodynamique quantique, qui peut être interprétée comme l'amplitude de probabilité pour qu'une particule élémentaire se déplace d'un endroit à un autre dans un temps donné. Le terme propagateur a été introduit en physique par Feynman en 1948 pour sa formulation de la mécanique quantique en intégrales de chemin, une nouvelle approche de la quantification centrée sur le Lagrangien, contrairement à la procédure habituelle de quantification canonique fondée sur le hamiltonien.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.