Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
SciPySciPy est un projet visant à unifier et fédérer un ensemble de bibliothèques Python à usage scientifique. Scipy utilise les tableaux et matrices du module NumPy. Cette distribution de modules est destinée à être utilisée avec le langage interprété Python afin de créer un environnement de travail scientifique très similaire à celui offert par Scilab, GNU Octave, Matlab voire R. Il contient par exemple des modules pour l'optimisation, l'algèbre linéaire, les statistiques, le traitement du signal ou encore le .
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Exploration de donnéesL’exploration de données, connue aussi sous l'expression de fouille de données, forage de données, prospection de données, data mining, ou encore extraction de connaissances à partir de données, a pour objet l’extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi-automatiques.
Bio-informatiqueLa bioinformatique (ou bio-informatique), est un champ de recherche multidisciplinaire de la biotechnologie où travaillent de concert biologistes, médecins, informaticiens, mathématiciens, physiciens et bioinformaticiens, dans le but de résoudre un problème scientifique posé par la biologie. Plus généralement, la bio-informatique est l'application de la statistique et de l'informatique à la science biologique. Le spécialiste qui travaille à mi-chemin entre ces sciences et l'informatique est appelé bioinformaticien ou bionaute.