Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
Hamburger moment problemIn mathematics, the Hamburger moment problem, named after Hans Ludwig Hamburger, is formulated as follows: given a sequence (m0, m1, m2, ...), does there exist a positive Borel measure μ (for instance, the measure determined by the cumulative distribution function of a random variable) on the real line such that In other words, an affirmative answer to the problem means that (m0, m1, m2, ...) is the sequence of moments of some positive Borel measure μ.
Suite aléatoirevignette|Cette suite est-elle aléatoire ? En mathématiques, une suite aléatoire, ou suite infinie aléatoire, est une suite de symboles d'un alphabet ne possédant aucune structure, régularité, ou règle de prédiction identifiable. Une telle suite correspond à la notion intuitive de nombres tirés au hasard. La caractérisation mathématique de cette notion est extrêmement difficile, et a fait l'objet d'études et de débats tout au long du . Une première tentative de définition mathématique (insatisfaisante) a été réalisée en 1919 par Richard von Mises.
Combinaison convexeEn géométrie affine, une combinaison convexe de certains points est un barycentre de ces points avec des coefficients tous positifs. L'ensemble des combinaisons convexes de ces points est donc leur enveloppe convexe. Soit E un espace affine réel (c'est-à-dire que les scalaires sont les nombres réels). Si et sont des points de E, une combinaison convexe des est un point de la forme où sont des réels positifs de somme 1. Le problème du point extrême consiste à déterminer si un point P0 est ou non une combinaison convexe de points Pi, 1 ≤ i ≤ n.
Fair coinIn probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin. John Edmund Kerrich performed experiments in coin flipping and found that a coin made from a wooden disk about the size of a crown and coated on one side with lead landed heads (wooden side up) 679 times out of 1000.
Bruno de FinettiBruno de Finetti (13 juin 1906 - 20 juillet 1985) est un statisticien et actuaire italien, connu pour sa conception « opérationnelle subjective » de la probabilité. L'exposition classique de sa théorie distinctive est La prévision : ses lois logiques, ses sources subjectives de 1937 qui a discuté des probabilités fondées sur la cohérence des cotes des paris et les conséquences de l' échange. De Finetti naît à Innsbruck, Autriche. Il étudie les mathématiques à l'École polytechnique de Milan.
Loi du χ² non centréeEn théorie des probabilités et en statistique, la loi du χ non centrée est une loi de probabilité qui généralise la loi du χ2. Cette loi apparait lors de tests statistiques, par exemple pour le maximum de vraisemblance. Soit X, k variables aléatoires indépendantes de loi normale de moyennes et variances . Alors la variable aléatoire suit une loi du χ non centrée. Elle dépend de deux paramètres : k qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de X), et λ qui est en lien avec la moyenne des variables X par la formule : est parfois appelé le paramètre de décentralisation.
Random variateIn probability and statistics, a random variate or simply variate is a particular outcome of a random variable; the random variates which are other outcomes of the same random variable might have different values (random numbers). A random deviate or simply deviate is the difference of a random variate with respect to the distribution central location (e.g., mean), often divided by the standard deviation of the distribution (i.e., as a standard score). Random variates are used when simulating processes driven by random influences (stochastic processes).
Inégalité de MarkovEn théorie des probabilités, l'inégalité de Markov donne une majoration de la probabilité qu'une variable aléatoire réelle à valeurs positives soit supérieure ou égale à une constante positive. Cette inégalité a été nommée ainsi en l'honneur d'Andreï Markov. Il existe une version plus générale de ce théorème. Soit une variable aléatoire de où est l'ensemble des réalisations, est la tribu des événements et la mesure de probabilité. Alors, l'inégalité de Markov peut être énoncée de la façon suivante :La démonstration tient entièrement au fait que pour tout strictement positif, .
Set functionIn mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning.