Résumé
In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources, especially in analysis, refer to it as Chebyshev's inequality (sometimes, calling it the first Chebyshev inequality, while referring to Chebyshev's inequality as the second Chebyshev inequality) or Bienaymé's inequality. Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a: Let (where ); then we can rewrite the previous inequality as In the language of measure theory, Markov's inequality states that if (X, Σ, μ) is a measure space, is a measurable extended real-valued function, and ε > 0, then This measure-theoretic definition is sometimes referred to as Chebyshev's inequality. If φ is a nondecreasing nonnegative function, X is a (not necessarily nonnegative) random variable, and φ(a) > 0, then An immediate corollary, using higher moments of X supported on values larger than 0, is We separate the case in which the measure space is a probability space from the more general case because the probability case is more accessible for the general reader. where is larger than or equal to 0 as the random variable is non-negative and is larger than or equal to because the conditional expectation only takes into account of values larger than or equal to which r.v. can take. Hence intuitively , which directly leads to . Method 1: From the definition of expectation: However, X is a non-negative random variable thus, From this we can derive, From here, dividing through by allows us to see that Method 2: For any event , let be the indicator random variable of , that is, if occurs and otherwise.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (6)
Pafnouti Tchebychev
Pafnouti Lvovitch Tchebychev (en Пафнутий Львович Чебышёв), né le à Okatovo, près de Borovsk, et décédé le à Saint-Pétersbourg, est un mathématicien russe. Son nom a tout d'abord été transcrit en français Tchebychef et la forme Tchebycheff est aussi utilisée en français. Il est aussi transcrit Tschebyschef ou Tschebyscheff (formes allemandes), Chebyshov ou Chebyshev (formes anglo-saxonnes). Il est connu pour ses travaux dans les domaines des probabilités, des statistiques, et de la théorie des nombres.
Fonction génératrice des moments
En théorie des probabilités et en statistique, la fonction génératrice des moments d'une variable aléatoire est la fonction M définie par pour tout réel t tel que cette espérance existe. Cette fonction, comme son nom l'indique, est utilisée afin d'engendrer les moments associés à la distribution de probabilités de la variable aléatoire .
Espérance mathématique
En théorie des probabilités, l'espérance mathématique d'une variable aléatoire réelle est, intuitivement, la valeur que l'on s'attend à trouver, en moyenne, si l'on répète un grand nombre de fois la même expérience aléatoire. Elle se note et se lit . Elle correspond à une moyenne pondérée des valeurs que peut prendre cette variable. Dans le cas où celle-ci prend un nombre fini de valeurs, il s'agit d'une moyenne pondérée par les probabilités d'apparition de chaque valeur.
Afficher plus