Les équations de Pitzer sont une application de la théorie thermodynamique destinées à calculer les coefficients osmotiques et les coefficients d'activité moyens d'ions en solution. Elles caractérisent les interactions entre électrolytes et solvant. Décrites par le chimiste Kenneth Pitzer, elles sont plus thermodynamiquement rigoureuses que la théorie SIT ou l'équation de Bromley, et leur domaine de validité est plus vaste que celui de la théorie de Debye-Hückel, mais les paramètres de ce modèle sont plus difficiles à déterminer expérimentalement. Elles sont notamment utilisées pour comprendre le comportement des ions dans les eaux naturelles. Le point de départ des équations de Pitzer est le développement du viriel de l'équation d'état pour un gaz : où P est la pression, V le volume, T la température, et B, C, D... les coefficients du viriel. Le premier terme à droite correspond à l'équation des gaz parfaits. Les suivants quantifient l'écart à l'idéalité en fonction de la pression. On peut montrer, via la mécanique statistique, que le deuxième coefficient du viriel vient des forces intermoléculaires entre les paires de molécules, que le troisième coefficient vient des interactions entre trois molécules, et ainsi de suite. Cette théorie a d'abord été développée par McMillan et Mayer. Les solutions de molécules neutres peuvent être traitées par une modification de la théorie de McMillan et Mayer. Mais quand une solutions contient des électrolytes, les interactions électrostatiques doivent être prises en compte. La théorie de Debye-Hückel est fondée sur l'hypothèse que chaque ion est entouré d'un "nuage" sphérique d'ions de charge opposée. Les équations dérivées de cette théorie expriment la variation du coefficient d'activité comme une fonction de la force ionique. Cette théorie est très efficace pour prédire les comportements de solutions diluées d'électrolytes 1:1 et, comme discuté plus bas, les équations issues de la théorie restent valides pour d'autres électrolytes tant que leur concentration reste assez faible.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (10)
Paire la fonction de corrélation et les propriétés macroscopiques
Explore le lien entre la fonction de corrélation des paires et les observables physiques, fournissant un aperçu des interactions des particules dans les liquides.
Modélisation de la qualité de l'eau: Thermodynamique et équilibre
Couvre la thermodynamique, les types de réaction, les constantes d'équilibre et la densité de l'eau et de l'eau de mer.
Afficher plus
Publications associées (32)
Concepts associés (4)
Activity coefficient
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law.
Activité chimique
En chimie physique, et plus particulièrement en thermodynamique, l'activité chimique, ou activité, d'une espèce chimique exprime l'écart entre les propriétés de cette espèce pure ou dans un mélange réel et les propriétés de cette même espèce dans un état standard à la même température. La notion d'activité chimique est surtout employée pour les phases liquide et solide. Elle permet notamment le calcul des équilibres de phases et des équilibres chimiques.
Constante d'équilibre
En chimie, une constante d'équilibre caractérise l'état d'équilibre d'un système chimique. Elle est donc associée à un état du système qui ne peut pas évoluer de manière spontanée. La valeur de la constante d'équilibre dépend uniquement de la réaction chimique considérée et de la température. Les constantes d'équilibre sont généralement données à . Claude-Louis Berthollet fut le premier, en 1803, à comprendre que toute réaction chimique n'est pas totale.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.