Trisection de l'angleLa trisection de l'angle est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser un angle en trois parties égales, à l'aide d'une règle et d'un compas. Sous cette forme, le problème (comme les deux autres) n'a pas de solution, ce qui fut démontré par Pierre-Laurent Wantzel en 1837.
3 (nombre)3 (trois) est l'entier naturel qui suit 2 et qui précède 4. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre trois. Trois (chiffre) Le chiffre « trois », symbolisé « 3 », est le chiffre arabe servant notamment à signifier le nombre trois. Le chiffre « 3 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
2 (nombre)2 (deux) est l'entier naturel qui suit 1 et qui précède 3. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre deux. Deux (chiffre) Le chiffre « deux », symbolisé « 2 », est le chiffre arabe servant notamment à signifier le nombre deux. Le chiffre « 2 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
7 (nombre)7 (sept) est en mathématiques l'entier naturel qui suit 6 et qui précède 8 ; c'est un nombre premier. En linguistique, le mot « sept » vient du latin septem (sept), dont la racine se retrouve dans toutes les langues indo-européennes. Le préfixe du Système international pour 1000 est zetta (Z), et pour son inverse zepto (z). Le nombre « sept » trouve de nombreuses occurrences dans les domaines scientifiques, mathématiques, astronomique, théologique, géographique, sportif ou dans les arts.
Construction à la règle et au compasEuclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.