The positive energy theorem (also known as the positive mass theorem) refers to a collection of foundational results in general relativity and differential geometry. Its standard form, broadly speaking, asserts that the gravitational energy of an isolated system is nonnegative, and can only be zero when the system has no gravitating objects. Although these statements are often thought of as being primarily physical in nature, they can be formalized as mathematical theorems which can be proven using techniques of differential geometry, partial differential equations, and geometric measure theory.
Richard Schoen and Shing-Tung Yau, in 1979 and 1981, were the first to give proofs of the positive mass theorem. Edward Witten, in 1982, gave the outlines of an alternative proof, which were later filled in rigorously by mathematicians. Witten and Yau were awarded the Fields medal in mathematics in part for their work on this topic.
An imprecise formulation of the Schoen-Yau / Witten positive energy theorem states the following:
Given an asymptotically flat initial data set, one can define the energy-momentum of each infinite region as an element of Minkowski space. Provided that the initial data set is geodesically complete and satisfies the dominant energy condition, each such element must be in the causal future of the origin. If any infinite region has null energy-momentum, then the initial data set is trivial in the sense that it can be geometrically embedded in Minkowski space.
The meaning of these terms is discussed below. There are alternative and non-equivalent formulations for different notions of energy-momentum and for different classes of initial data sets. Not all of these formulations have been rigorously proven, and it is currently an open problem whether the above formulation holds for initial data sets of arbitrary dimension.
The original proof of the theorem for ADM mass was provided by Richard Schoen and Shing-Tung Yau in 1979 using variational methods and minimal surfaces.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
L'analyse géométrique est un champ mathématique à l'interface de la géométrie différentielle et des équations différentielles. vignette| de surface minimale. Les surfaces minimales font partie des objets d'étude en analyse géométrique. L'analyse géométrique comprend à la fois l'utilisation de méthodes géométriques dans l'étude des équations aux dérivées partielles, et l'application de la théorie des équations aux dérivées partielles à la géométrie.
Shing-Tung Yau ( ; ku1 sêng-tông), né le à Shantou, est un mathématicien chinois connu pour ses travaux en géométrie différentielle, et est à l'origine de la théorie des variétés de Calabi-Yau. Shing-Tung Yau naît dans la ville de Shantou, province de Guangdong (Chine) dans une famille de huit enfants. Son père, un professeur de philosophie, est mort alors qu'il avait quatorze ans. Il déménage à Hong Kong avec sa famille, où il étudie les mathématiques à l'université chinoise de Hong Kong de 1966 à 1969.
This thesis is a study of harmonic maps in two different settings. The first part is concerned with harmonic maps from smooth metric measure spaces to Riemannian manifolds. The second part is study of harmonic maps from Riemannian polyhedra to non-positive ...
We observe that an analogue of the Positive Mass Theorem in the time-symmetric case for three-space-time-dimensional general relativity follows trivially from the Gauss-Bonnet theorem. In this case we also have that the spatial slice is diffeomorphic to $\ ...
This thesis is devoted to studying field-theoretical branes in warped geometries, with emphasis on brane excitations and properties of background solutions. Firstly, we examine the features of a model in which our universe is represented by a local string- ...