Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely
to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.
The scope of geometric analysis includes both the use of geometrical methods in the study of partial differential equations (when it is also known as "geometric PDE"), and the application of the theory of partial differential equations to geometry. It incorporates problems involving curves and surfaces, or domains with curved boundaries, but also the study of Riemannian manifolds in arbitrary dimension. The calculus of variations is sometimes regarded as part of geometric analysis, because differential equations arising from variational principles have a strong geometric content. Geometric analysis also includes global analysis, which concerns the study of differential equations on manifolds, and the relationship between differential equations and topology.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of this course is to introduce the student to the basic notion of analysis on metric (measure) spaces, quasiconformal mappings, potential theory on metric spaces, etc. The subjects covered wi
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
The positive energy theorem (also known as the positive mass theorem) refers to a collection of foundational results in general relativity and differential geometry. Its standard form, broadly speaking, asserts that the gravitational energy of an isolated system is nonnegative, and can only be zero when the system has no gravitating objects. Although these statements are often thought of as being primarily physical in nature, they can be formalized as mathematical theorems which can be proven using techniques of differential geometry, partial differential equations, and geometric measure theory.
En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés.
, , , ,
Explore la conicite dans la conception de pavillon en bois, couvrant la modélisation, l'assemblage de la structure, et les techniques avancées.
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Se concentre sur le projet de structure et d'enveloppe, en mettant l'accent sur la documentation exacte et le travail de collaboration.
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
A novel surrogate model based on the Grassmannian diffusion maps (GDMaps) and utilizing geometric harmonics (GH) is developed for predicting the response of complex physical phenomena. The method utilizes GDMaps to obtain a low-dimensional representation o ...
2022
,
Catchments are heterogeneous ecosystems involving several abiotic and biotic processes, where the mutual interactions among water, vegetation, and biogeochemical fluxes take place at different scales. Many biological processes in nature are characterized b ...