In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes. Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.
Mathematically, projective twistor space is a 3-dimensional complex manifold, complex projective 3-space . It has the physical interpretation of the space of massless particles with spin. It is the projectivisation of a 4-dimensional complex vector space, non-projective twistor space with a Hermitian form of signature (2,2) and a holomorphic volume form. This can be most naturally understood as the space of chiral (Weyl) spinors for the conformal group of Minkowski space; it is the fundamental representation of the spin group of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors for the conformal group.
In its original form, twistor theory encodes physical fields on Minkowski space into complex analytic objects (mathematical objects that can be studied using complex analysis) on twistor space via the Penrose transform. This is especially natural for massless fields of arbitrary spin.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En physique, un réseau de spin est un type de diagramme qui peut être utililisé pour représenter les états et interactions entre particules et champs en mécanique quantique. D'un point de vue mathématique, les diagrammes permettent de représenter de manière concise des fonctions multilinéaires et des fonctions entre représentations de groupe matriciel. La notation en diagramme simplifie souvent les calculs car de simples diagrammes permettent de représenter des fonctions compliquées.
En mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
En mathématiques, le groupe spinoriel de degré n, noté Spin(n), est un revêtement double particulier du groupe spécial orthogonal réel SO(n,R). C’est-à-dire qu’il existe une suite exacte de groupes de Lie On peut aussi définir les groupes spinoriels d'une forme quadratique non dégénérée sur un corps commutatif. Pour n > 2, Spin(n) est simplement connexe et coïncide avec le revêtement universel de SO(n,R). En tant que groupe de Lie, Spin(n) partage sa dimension n(n–1)/2 et son algèbre de Lie avec le groupe spécial orthogonal.
We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient a controlling the leading correction to maximal supergravity ...
AMER PHYSICAL SOC2021
We use the S-matrix bootstrap to carve out the space of unitary, analytic, crossing symmetric and supersymmetric graviton scattering amplitudes in nine, ten and eleven dimensions. We extend and improve the numerical methods of our previous work in ten dime ...
SPRINGER2023
The boundary correlation functions for a Quantum Field Theory (QFT) in an Anti-de Sitter (AdS) background can stay conformally covariant even if the bulk theory undergoes a renormalization group (RG) flow. Studying such correlation functions with the numer ...
Introduit les bases de Python comme les types, les fonctions, les conditions, les boucles et les listes, avec des exemples de manipulation de chaîne et d'opérations de liste.