vignette|360px|Graphique de la fonction f(x) = 3x - 5x + 8 (noir), avec un maximum local ("HP"), un minimum ( "TP"), et un point d'inflexion ( "WP"), obtenu à partir de ses dérivée première (rouge) et seconde (bleu).
En mathématiques, une étude de fonction est la détermination de certaines propriétés d'une fonction numérique, en général d'une variable réelle, pour en tracer une représentation graphique à partir d'une expression analytique ou d'une équation fonctionnelle, ou encore pour en déduire le nombre et la disposition d'antécédents pour diverses valeurs numériques.
L'étude passe d'abord par la détermination du domaine de définition et vise essentiellement la description des variations, voire des lignes de niveau dans le cas de fonctions de plusieurs variables.
Lorsqu'une fonction est donnée par une représentation de courbe, la lecture graphique permet de lire son domaine de définition, à savoir l'ensemble des points de l'axe des abscisses (en général un intervalle ou une réunion d'intervalles) pour lesquels la courbe associe une ordonnée.
Les intersections de la courbe avec l'axe des abscisses indiquent les points d'annulation de la fonction, autrement dit les antécédents de 0. Si la fonction est continue, elle est de signe constant sur les intervalles du domaine de définition qui ne contiennent pas de point d'annulation (en dehors éventuellement de leurs extrémités). Il est possible alors de déterminer ce signe sur chacun de ces intervalles d'après la position relative de la courbe et de l'axe des abscisses :
si la courbe est au-dessus de l'axe des abscisses, la fonction est positive sur cet intervalle ;
si la courbe est en dessous de l'axe des abscisses, la fonction est négative sur cet intervalle.
La lecture graphique permet aussi de repérer les intervalles en abscisse sur lesquels la fonction est monotone, c'est-à-dire soit croissante, soit décroissante. Ces intervalles sont a priori différents des intervalles de signe constant.
Toutes ces informations peuvent être rassemblées dans un tableau de variations.