Couvre les modèles linéaires, la régression logistique, les limites de décision, k-NN, et les applications pratiques dans l'attribution des auteurs et l'analyse des données d'image.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore les modèles linéaires pour la classification, y compris la classification binaire, la régression logistique, les limites de décision et les machines vectorielles de support.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Explore lutilisation des modèles de mélange gaussien pour la transition du clustering à la classification, couvrant la classification binaire, lestimation des paramètres et le classificateur Bayes optimal.