Publications associées (10)

The multivariate Serre conjecture ring

Luc Guyot

It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
San Diego2023

Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics

Florian Karl Richter

A set RNR\subset \mathbb{N} is called rational if it is well approximable by finite unions of arithmetic progressions, meaning that for every \unicode[STIX]x1D716>0\unicode[STIX]{x1D716}>0 there exists a set B=i=1raiN+biB=\bigcup _{i=1}^{r}a_{i}\mathbb{N}+b_{i}, where $a_{1},\ldots ,a_ ...
2019

Stability and charge transfer at the interface between SiC(0001) and epitaxial graphene

Alfredo Pasquarello, Gabriele Sclauzero

Using density functional calculations, we address the energetics of the interface between the SiC(0001) substrate and the first covalently bonded epitaxial graphene layer. We consider a 6 root 3 x 6 root 3R30 degrees geometry showing the experimental perio ...
Elsevier2011

Dry rock avalanche propagation

Irene Manzella

Rock avalanches are catastrophic phenomena which are not yet exhaustively understood. They consist of rock mass movements of more than one million cubic metres, involving a great amount of energy and travelling farther than expected with a normal sliding f ...
EPFL2008

Polynomial-time algorithms for the factorization of polynomials

Arjen Lenstra

In 1982 a polynomial-time algorithm for factoring polynomials in one variable with rational coefficients was published (see A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovasz, Math. Ann., vol.261, p.515-34, 1982). This L3-algorithm came as a r ...
1984

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.