Concept

Omega-categorical theory

In mathematical logic, an omega-categorical theory is a theory that has exactly one countably infinite model up to isomorphism. Omega-categoricity is the special case κ = = ω of κ-categoricity, and omega-categorical theories are also referred to as ω-categorical. The notion is most important for countable first-order theories. Many conditions on a theory are equivalent to the property of omega-categoricity. In 1959 Erwin Engeler, Czesław Ryll-Nardzewski and Lars Svenonius, proved several independently. Despite this, the literature still widely refers to the Ryll-Nardzewski theorem as a name for these conditions. The conditions included with the theorem vary between authors. Given a countable complete first-order theory T with infinite models, the following are equivalent: The theory T is omega-categorical. Every countable model of T has an oligomorphic automorphism group (that is, there are finitely many orbits on Mn for every n). Some countable model of T has an oligomorphic automorphism group. The theory T has a model which, for every natural number n, realizes only finitely many n-types, that is, the Stone space Sn(T) is finite. For every natural number n, T has only finitely many n-types. For every natural number n, every n-type is isolated. For every natural number n, up to equivalence modulo T there are only finitely many formulas with n free variables, in other words, for every n, the nth Lindenbaum–Tarski algebra of T is finite. Every model of T is atomic. Every countable model of T is atomic. The theory T has a countable atomic and saturated model. The theory T has a saturated prime model. The theory of any countably infinite structure which is homogeneous over a finite relational language is omega-categorical.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.