Concept

Saturated model

Résumé
In mathematical logic, and particularly in its subfield model theory, a saturated model M is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is -saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection. Let κ be a finite or infinite cardinal number and M a model in some first-order language. Then M is called κ-saturated if for all subsets A ⊆ M of cardinality less than κ, the model M realizes all complete types over A. The model M is called saturated if it is |M|-saturated where |M| denotes the cardinality of M. That is, it realizes all complete types over sets of parameters of size less than |M|. According to some authors, a model M is called countably saturated if it is -saturated; that is, it realizes all complete types over countable sets of parameters. According to others, it is countably saturated if it is countable and saturated. The seemingly more intuitive notion—that all complete types of the language are realized—turns out to be too weak (and is appropriately named weak saturation, which is the same as 1-saturation). The difference lies in the fact that many structures contain elements that are not definable (for example, any transcendental element of R is, by definition of the word, not definable in the language of fields). However, they still form a part of the structure, so we need types to describe relationships with them. Thus we allow sets of parameters from the structure in our definition of types. This argument allows us to discuss specific features of the model that we may otherwise miss—for example, a bound on a specific increasing sequence cn can be expressed as realizing the type {x ≥ cn : n ∈ ω}, which uses countably many parameters. If the sequence is not definable, this fact about the structure cannot be described using the base language, so a weakly saturated structure may not bound the sequence, while an א1-saturated structure will.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.