In mathematical logic, and particularly in its subfield model theory, a saturated model M is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is -saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection.
Let κ be a finite or infinite cardinal number and M a model in some first-order language. Then M is called κ-saturated if for all subsets A ⊆ M of cardinality less than κ, the model M realizes all complete types over A. The model M is called saturated if it is |M|-saturated where |M| denotes the cardinality of M. That is, it realizes all complete types over sets of parameters of size less than |M|. According to some authors, a model M is called countably saturated if it is -saturated; that is, it realizes all complete types over countable sets of parameters. According to others, it is countably saturated if it is countable and saturated.
The seemingly more intuitive notion—that all complete types of the language are realized—turns out to be too weak (and is appropriately named weak saturation, which is the same as 1-saturation). The difference lies in the fact that many structures contain elements that are not definable (for example, any transcendental element of R is, by definition of the word, not definable in the language of fields). However, they still form a part of the structure, so we need types to describe relationships with them. Thus we allow sets of parameters from the structure in our definition of types. This argument allows us to discuss specific features of the model that we may otherwise miss—for example, a bound on a specific increasing sequence cn can be expressed as realizing the type {x ≥ cn : n ∈ ω}, which uses countably many parameters. If the sequence is not definable, this fact about the structure cannot be described using the base language, so a weakly saturated structure may not bound the sequence, while an א1-saturated structure will.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Rhombohedral Pb(Zr0.70Ti0.30)O-3 thin films of four different well-defined textures, namely, (100), (111), bimodal (110)/(111), and (100)/(111), were prepared by a sol-gel method. The films were characterized in terms of grain size, presence of second phas ...
En mathématiques, un corps réel clos est un corps totalement ordonnable dont aucune extension algébrique propre n'est totalement ordonnable. Les corps suivants sont réels clos : le corps des réels, le sous-corps des réels algébriques, le corps des réels calculables (au sens de Turing), le corps des , le corps des séries de Puiseux à coefficients réels, tout corps superréel (en particulier tout corps hyperréel).
In the mathematical field of model theory, a theory is called stable if it satisfies certain combinatorial restrictions on its complexity. Stable theories are rooted in the proof of Morley's categoricity theorem and were extensively studied as part of Saharon Shelah's classification theory, which showed a dichotomy that either the models of a theory admit a nice classification or the models are too numerous to have any hope of a reasonable classification.
In mathematical logic, an omega-categorical theory is a theory that has exactly one countably infinite model up to isomorphism. Omega-categoricity is the special case κ = = ω of κ-categoricity, and omega-categorical theories are also referred to as ω-categorical. The notion is most important for countable first-order theories. Many conditions on a theory are equivalent to the property of omega-categoricity. In 1959 Erwin Engeler, Czesław Ryll-Nardzewski and Lars Svenonius, proved several independently.