In mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism). Such a theory can be viewed as defining its model, uniquely characterizing the model's structure.
In first-order logic, only theories with a finite model can be categorical. Higher-order logic contains categorical theories with an infinite model. For example, the second-order Peano axioms are categorical, having a unique model whose domain is the set of natural numbers
In model theory, the notion of a categorical theory is refined with respect to cardinality. A theory is κ-categorical (or categorical in κ) if it has exactly one model of cardinality κ up to isomorphism. Morley's categoricity theorem is a theorem of stating that if a first-order theory in a countable language is categorical in some uncountable cardinality, then it is categorical in all uncountable cardinalities.
extended Morley's theorem to uncountable languages: if the language has cardinality κ and a theory is categorical in some uncountable cardinal greater than or equal to κ then it is categorical in all cardinalities greater than κ.
Oswald Veblen in 1904 defined a theory to be categorical if all of its models are isomorphic. It follows from the definition above and the Löwenheim–Skolem theorem that any first-order theory with a model of infinite cardinality cannot be categorical. One is then immediately led to the more subtle notion of κ-categoricity, which asks: for which cardinals κ is there exactly one model of cardinality κ of the given theory T up to isomorphism? This is a deep question and significant progress was only made in 1954 when Jerzy Łoś noticed that, at least for complete theories T over countable languages with at least one infinite model, he could only find three ways for T to be κ-categorical at some κ:
T is totally categorical, i.e. T is κ-categorical for all infinite cardinals κ.
T is uncountably categorical, i.e. T is κ-categorical if and only if κ is an uncountable cardinal.
T is countably categorical, i.e.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
En logique mathématique, une théorie complète est une théorie qui est équivalente à un ensemble maximal cohérent de propositions ; ceci signifie qu'elle est cohérente et que toute extension propre ne l'est plus. Pour des théories logiques qui contiennent la logique propositionnelle classique, ceci équivaut à la condition que pour toute proposition φ du langage de la théorie, soit elle contient φ, soit elle contient sa négation ¬φ.
En logique mathématique et en philosophie analytique, le paradoxe de Skolem est une conséquence troublante du théorème de Löwenheim-Skolem en théorie des ensembles. Il affirme qu'une théorie des ensembles, comme ZFC, si elle a un modèle, a un modèle dénombrable, bien que l'on puisse par ailleurs définir une formule qui exprime l'existence d'ensembles non dénombrables. C'est un paradoxe au sens premier de ce terme : il va contre le sens commun, mais ce n'est pas une antinomie, une contradiction que l'on pourrait déduire dans la théorie.
In mathematical logic, an omega-categorical theory is a theory that has exactly one countably infinite model up to isomorphism. Omega-categoricity is the special case κ = = ω of κ-categoricity, and omega-categorical theories are also referred to as ω-categorical. The notion is most important for countable first-order theories. Many conditions on a theory are equivalent to the property of omega-categoricity. In 1959 Erwin Engeler, Czesław Ryll-Nardzewski and Lars Svenonius, proved several independently.
Couvre les progressions arithmétiques, les treillis, la vérification formelle, les chaînes, les formules explicites, les relations de récurrence, les formules fermées et l'argument Diagonal de Cantor.
Explore les ensembles dénombrables et innombrables, l'ensemble Cantor, l'ensemble Mandelbrot et la dimension Box dans la dynamique non linéaire et les systèmes complexes.
K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...
Let g be a nilpotent Lie algebra (of finite dimension n over an algebraically closed field of characteristic zero) and let Der(g) be the algebra of derivations of g. The system of weights of g is defined as being that of the standard representation of a "m ...