droite|vignette|388x388px|Carte des nucléides du carbone au fluor. Modes de décroissance : En physique nucléaire, les frontières pour la stabilité des noyaux sont appelées limites de stabilité ou drip lines. Les noyaux atomiques contiennent à la fois des protons et des neutrons - le nombre de proton définit l'identité d'un élément (par exemple, le carbone a toujours 6 protons), mais le nombre de neutrons peut varier (le carbone 13 et le carbone 14 sont par exemple deux isotopes du carbone). Le nombre d'isotopes de chaque élément peut être représenté visuellement en traçant des boites, chacune d'elles représente un isotope unique, sur un graphique avec le nombre de neutrons sur l'axe des abscisses (axe X) et le nombre de protons sur l'axe des ordonnées (axe Y), ce que l'on dénomme habituellement la carte des nucléides. Une combinaison arbitraire de protons et de neutrons ne conduit pas nécessairement à un noyau stable. On peut monter et/ou se diriger vers la droite de la carte des noyaux en ajoutant un type de nucléons (c'est-à-dire un proton ou un neutron, tous les deux appelés nucléons) à un noyau donné. Cependant, l'ajout de nucléons un à un à un noyau donné conduira éventuellement à un noyau nouvellement formé qui décroit immédiatement en émettant un proton (ou un neutron). En parlant familièrement, on dit que le nucléon a « coulé » (« dripped » en anglais) en dehors du noyau, donnant ainsi le terme « drip line ». Les limites de stabilité sont définies pour les protons, les neutrons et les particules alpha et elles ont un rôle important en physique nucléaire. Les limites de stabilité des nucléons sont situées à des rapports proton sur neutron extrêmes : pour des rapports p:n au niveau ou au-delà des limites de stabilité, aucun noyau stable ne peut exister. La position de la limite de stabilité neutron n'est pas bien connue pour la plupart de la carte des noyaux, alors que les limites de stabilité proton et alpha ont été mesurées sur une large plage d'éléments.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
Séances de cours associées (15)
Physique des neutrons : Aperçu du réacteur
Couvre les interactions neutroniques, les produits de fission, la libération d'énergie et les considérations de conception du réacteur.
Introduction au génie nucléaire
Couvre l'importance des neutrons retardés dans la réponse du réacteur et la thermohydraulique des noyaux du réacteur.
Origine des Nuclides
Explore l'origine des radionucléides des explosions de supernova et leur rôle dans la nature, couvrant des sujets tels que l'astrophysique nucléaire, la formation d'éléments cosmiques et l'évolution stellaire.
Afficher plus
Publications associées (65)
Concepts associés (7)
Processus p
Le processus p est un ensemble de processus astrophysiques conduisant à la nucléosynthèse stellaire d'éléments chimiques par capture de protons (d'où la lettre p) pour donner des isotopes pauvres en neutrons typiquement situés entre le sélénium et le mercure . Ces nucléides sont appelés et leur origine n'est pas encore complètement comprise. Bien que le processus proposé initialement ne soit pas en mesure de produire tous ces noyaux, le terme a par la suite été parfois employé pour désigner n'importe quel processus de nucléosynthèse susceptible de produire de tels noyaux.
Even and odd atomic nuclei
In nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number (proton number) Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model.
Nucléosynthèse stellaire
La nucléosynthèse stellaire est le terme utilisé en astrophysique pour désigner l'ensemble des réactions nucléaires qui se produisent à l'intérieur des étoiles (fusion nucléaire et processus s) ou pendant leur destruction explosive (processus r, p, rp) et dont le résultat est la synthèse de la plupart des noyaux atomiques. La position d'une étoile sur le diagramme de Hertzsprung-Russell détermine en grande partie les éléments qu'elle synthétise. L'origine des éléments a posé un problème difficile aux scientifiques pendant longtemps.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.