La supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs.
La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie. Ses applications potentielles sont stratégiques.
Dans les supraconducteurs conventionnels, des interactions complexes se produisent entre les atomes et les électrons libres et conduisent à l'apparition de paires liées d'électrons, appelées paires de Cooper. L'explication de la supraconductivité est intimement liée aux caractéristiques quantiques de la matière. Alors que les électrons sont des fermions, les paires d'électrons se comportent comme des bosons de spin égal à 0 nommé singulet, et sont « condensées » dans un seul état quantique, sous la forme d'un superfluide de paires de Cooper.
Un effet similaire de la supraconductivité est la superfluidité, caractérisant un écoulement sans aucune résistance, c'est-à-dire qu'une petite perturbation que l'on soumet à ce type de liquide ne s'arrête jamais, de la même façon que les paires de Cooper se déplacent sans aucune résistance dans un supraconducteur.
Il existe également d'autres classes de matériaux, collectivement appelés « supraconducteurs non conventionnels » (par opposition à la dénomination de supraconductivité conventionnelle), dont les propriétés ne sont pas expliquées par la théorie BCS. En particulier, la classe des cuprates (ou « supraconducteurs à haute température critique »), découverte en 1986, présente des propriétés supraconductrices à des températures bien plus élevées que les supraconducteurs conventionnels.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of modern condensed matter physics ranging from the quantum Hall effects to superconductivity.
This course will focus on the electron transport in semiconductors, with emphasis on the mesoscopic systems. The aim is to understand the transport of electrons in low dimensional systems, where even
Un supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
En physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
La théorie BCS est une théorie de la supraconductivité qui fut proposée en 1957 par John Bardeen, Leon Neil Cooper, et John Robert Schrieffer. Elle explique la supraconductivité par la formation de paires d'électrons (paires de Cooper) sous l'effet d'une interaction attractive entre électrons résultant de l'échange de phonons. Pour leur travail, ces auteurs obtinrent le prix Nobel de physique en 1972. Il est possible de comprendre l'origine de l'attraction entre les électrons grâce à un argument qualitatif simple.
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling sup ...
Nature Portfolio2024
, , , , ,
Superconducting electronics provide us with cryogenic digital circuits that can rival established technologies in performance and energy consumption. Today, the lack of tools for the design of large-scale integrated superconducting circuits is a major obst ...
2024
We report measurements of the in-plane thermoelectric power (TEP) for an overdoped (OD) crystal of the single layer cuprate superconductor Tl2Ba2CuO6+x (Tl2201) at several hole concentrations (p), from 300 or 400 K to below the superconducting transition t ...