Formal specificationIn computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.
Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Sémantique opérationnelleEn informatique, la sémantique opérationnelle est l'une des approches qui servent à donner une signification aux programmes informatiques d'une manière rigoureuse, mathématiquement parlant (voir Sémantique des langages de programmation). Une sémantique opérationnelle d'un langage de programmation particulier décrit comment chaque programme valide du langage doit être interprété en termes de suite d'états successifs dans la machine. Cette suite d'états est la signification du programme.
Sémantique dénotationnelleEn informatique, la sémantique dénotationnelle est une des approches permettant de formaliser la signification d'un programme en utilisant les mathématiques. Parmi les autres approches, on trouve la sémantique axiomatique et la sémantique opérationnelle. Cette discipline a été introduite par Christopher Strachey et Dana Scott. En général, la sémantique dénotationnelle utilise des techniques de programmation fonctionnelle pour décrire les langages informatiques, les architectures et les programmes.
Coq (logiciel)Coq est un assistant de preuve utilisant le langage Gallina, développé par l'équipe PI.R2 de l’Inria au sein du laboratoire PPS du CNRS et en partenariat avec l'École polytechnique, le CNAM, l'Université Paris Diderot et l'Université Paris-Sud (et antérieurement l'École normale supérieure de Lyon). Le nom du logiciel (initialement CoC) est particulièrement adéquat car : il est français ; il est fondé sur le calcul des constructions (CoC abrégé en anglais) introduit par Thierry Coquand.
Sémantique axiomatiqueLa sémantique axiomatique est une approche basée sur la logique mathématique qui sert à prouver qu'un programme informatique est correct. Cette sémantique tend à considérer un programme comme un transformateur de propriétés logiques, c'est-à-dire que la signification donnée au programme est un ensemble de prédicats qui sont vérifiés par l'état de la machine (caractérisé par sa mémoire) qui a exécuté le programme, à condition qu'un autre ensemble de prédicats ait été vérifié avant exécution.
Terminaison d'un algorithmeLa terminaison est une propriété fondamentale des algorithmes. Elle stipule que les calculs décrits par l'algorithme s'arrêteront. En général cet arrêt doit avoir lieu quelles que soient les données initiales que l'on fournit à l'algorithme. Si l'on veut insister sur ce point on parle alors souvent de terminaison uniforme, mais le plus généralement « terminaison » couvre aussi bien l'arrêt sur une donnée que l'arrêt sur toutes les données et c'est le contexte qui décide.
Logique temporelle linéaireEn logique, la logique temporelle linéaire (LTL) est une logique temporelle modale avec des modalités se référant au temps. En LTL, on peut coder des formules sur l'avenir d'un chemin infini dans un système de transitions, par exemple une condition finira par être vraie, une condition sera vraie jusqu'à ce qu'une autre devienne vraie, etc. Cette logique est plus faible que la logique CTL*, qui permet d'exprimer des conditions sur des ramifications de chemins et pas seulement sur un seul chemin.
RaffinementEn informatique, le raffinement consiste à détailler la conception pour arriver par itérations à l'implémentation finale. À chaque itération correspond un niveau de granularité de plus en plus fin. Quand cette technique est appliquée au code source, la conception est alors matérialisée par du pseudo-code. Cette technique peut aussi être appliquée au modèle de données.
Réseau de PetriAnimated_Petri_net_commons.gif Un réseau de Petri (aussi connu comme un réseau de Place/Transition ou réseau de P/T) est un modèle mathématique servant à représenter divers systèmes (informatiques, industriels...) travaillant sur des variables discrètes. Les réseaux de Petri sont apparus en 1962, dans la thèse de doctorat de Carl Adam Petri. Les réseaux de Petri sont des outils graphiques et mathématiques permettant de modéliser et de vérifier le comportement dynamique des systèmes à événements discrets comme les systèmes manufacturiers, les systèmes de télécommunications, les réseaux de transport.