Résumé
In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called denotations) that describe the meanings of expressions from the languages. Other approaches providing formal semantics of programming languages include axiomatic semantics and operational semantics. Broadly speaking, denotational semantics is concerned with finding mathematical objects called domains that represent what programs do. For example, programs (or program phrases) might be represented by partial functions or by games between the environment and the system. An important tenet of denotational semantics is that semantics should be compositional: the denotation of a program phrase should be built out of the denotations of its subphrases. Denotational semantics originated in the work of Christopher Strachey and Dana Scott published in the early 1970s. As originally developed by Strachey and Scott, denotational semantics provided the meaning of a computer program as a function that mapped input into output. To give meanings to recursively defined programs, Scott proposed working with continuous functions between domains, specifically complete partial orders. As described below, work has continued in investigating appropriate denotational semantics for aspects of programming languages such as sequentiality, concurrency, non-determinism and local state. Denotational semantics has been developed for modern programming languages that use capabilities like concurrency and exceptions, e.g., Concurrent ML, CSP, and Haskell. The semantics of these languages is compositional in that the meaning of a phrase depends on the meanings of its subphrases. For example, the meaning of the applicative expression f(E1,E2) is defined in terms of semantics of its subphrases f, E1 and E2. In a modern programming language, E1 and E2 can be evaluated concurrently and the execution of one of them might affect the other by interacting through shared objects causing their meanings to be defined in terms of each other.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.