Invariant (physics)In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.
Symétrie TNommée ainsi dans le cadre de la physique des particules, on dit qu'une théorie possède la symétrie T, ou encore symétrie par renversement du temps, si elle est invariante sous la transformation d'inversion du temps c'est-à-dire qui effectue le changement suivant sur la coordonnée de temps Alors que la symétrie T semble naturelle en mécanique quantique, elle est néanmoins violée dans le cadre du modèle standard car la symétrie CP est violée alors que par la symétrie CPT obtenue par application simultanée du
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Rotational invarianceIn mathematics, a function defined on an inner product space is said to have rotational invariance if its value does not change when arbitrary rotations are applied to its argument. For example, the function is invariant under rotations of the plane around the origin, because for a rotated set of coordinates through any angle θ the function, after some cancellation of terms, takes exactly the same form The rotation of coordinates can be expressed using matrix form using the rotation matrix, or symbolically x′ = Rx.
Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.
Covariance généraleEn physique théorique, la covariance générale (ou invariance générale) est l'invariance de la forme des lois physiques dans toute transformation de coordonnées différentiable. Le principe qui sous-tend cette notion est qu'il n'existe a priori aucune coordonnée dans la Nature, ce sont seulement des artifices mathématiques utilisés pour la décrire, et qui ne devraient donc jouer aucun rôle dans l'expression des lois fondamentales de la physique.
Mathematical formulation of the Standard ModelThis article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena.
Hypercharge faibleL' est, en physique des particules, un nombre quantique correspond à deux fois la différence entre la charge électrique et l'isospin faible. C'est le générateur du composant U(1) du groupe de jauge électrofaible, SU(2)xU(1). Dans une relation semblable à la formule de Gell-Mann–Nishijima, on a : où Q est la charge électrique (dans les unités de la charge élémentaire), Tz est l'isospin faible, et YW est l'hypercharge faible.
Groupe de LorentzLe groupe de Lorentz est le groupe mathématique constitué par l'ensemble des transformations de Lorentz de l'espace de Minkowski. Les formules mathématiques : des lois de la cinématique de la relativité restreinte ; des équations de champ de Maxwell dans la théorie de électromagnétisme ; de l'équation de Dirac dans la théorie de l'électron sont toutes invariantes sous les transformations de Lorentz. En conséquence, le groupe de Lorentz exprimerait la symétrie fondamentale de plusieurs lois de la nature.
Symétrie Cvignette|upright=1.3|Illusion de symétrie : le reflet de l'ombre de la lampe (sous l'effet du flash de l'appareil photo) semble être le reflet de celle-ci ! En physique des particules, la conjugaison de charge, ou transformation de charge, ou inversion de charge est possiblement observable en ce qui concerne l'électromagnétisme, la gravité, et l'interaction forte. En revanche, la « Symétrie C » (symétrie de charge) n'est pas observée « dans le tableau » de l'interaction faible. C(x)= -x. C(e+)= e-. C(e-)= e+.