Conformal map projectionIn cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map with a conformal projection cross at a 39° angle. A conformal projection can be defined as one that is locally conformal at every point on the map, albeit possibly with singular points where conformality fails.
Projection cartographiqueLa projection cartographique est un ensemble de techniques géodésiques permettant de représenter une surface non plane (surface de la Terre, d'un autre corps céleste, du ciel, ...) dans son ensemble ou en partie sur la surface plane d'une carte. L'impossibilité de projeter le globe terrestre sur une surface plane sans distorsion (Theorema egregium) explique que diverses projections aient été inventées, chacune ayant ses avantages. Le choix d'une projection et le passage d'une projection à une autre comptent parmi les difficultés mathématiques que les cartographes ont dû affronter.
Equal-area projectionIn cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped. By Gauss's Theorema Egregium, an equal-area projection cannot be conformal.
Projection cylindrique équidistanteLa projection cylindrique équidistante, encore appelée projection équirectangulaire ou projection géographique, est un type de projection cartographique très simple attribué à Marinus de Tyr vers 100 ap. J.-C.. La projection consiste à considérer les coordonnées polaires de latitude et longitude comme des coordonnées cartésiennes. En ce sens, on parle parfois de « non-projection ». Cependant la transformation effectuée se définit (partiellement) comme une projection de la surface du globe sur la surface d'un cylindre, dont l'axe se confond avec l'axe des pôles et contient les origines des vecteurs de projection.
Parallèle (géographie)Sur Terre, un parallèle est un cercle abstrait reliant tous les lieux situés sur une même latitude. Leur nom de «parallèles» fait référence au fait qu'ils sont obtenus par intersection de la surface de la Terre avec des plans perpendiculaires à l'axe de rotation de celle-ci et donc parallèles au plan de l'équateur. Méridiens et parallèles dessinent un quadrillage sur la surface de la Terre permettant de repérer la position d'un point.
Projection de MercatorLa projection de Mercator ou projection Mercator est une projection cartographique de la Terre, dite «cylindrique», tangente à l'équateur du globe terrestre sur une carte plane formalisée par le géographe flamand Gerardus Mercator, en 1569. Elle s'est imposée comme le planisphère de référence dans le monde grâce à sa précision pour les voyages marins. Ce n'est pas, stricto sensu, une projection centrale : le point de latitude φ n'est pas envoyé, comme on pourrait s'y attendre, sur un point d'ordonnée proportionnelle à tan(φ) mais sur un point d'ordonnée proportionnelle à ln[tan(φ/2 + π/4)].
Projection stéréographiqueEn géométrie et en cartographie, la projection stéréographique est une projection cartographique azimutale permettant de représenter une sphère privée d'un point sur un plan. On convient souvent que le point dont on prive la sphère sera un des pôles de celle-ci ; le plan de projection peut être celui qui sépare les deux hémisphères, nord et sud, de la sphère, qu'on appelle plan équatorial. On peut également faire une projection stéréographique sur n'importe quel plan parallèle au plan équatorial pourvu qu'il ne contienne pas le point dont on a privé la sphère.
CartographieLa cartographie est la réalisation et l'étude des cartes géographiques et géologiques. Elle est très dépendante de la géodésie, science qui s'efforce de décrire, mesurer et rendre compte de la forme et des dimensions de la Terre. Le principe majeur de la cartographie est la représentation de données sur un support réduit représentant un espace généralement tenu pour réel. L'objectif de la carte, c'est une représentation concise et efficace, la simplification de phénomènes complexes (politiques, économiques, sociaux, etc.