Unbiased estimation of standard deviationIn statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.
Standardized momentIn probability theory and statistics, a standardized moment of a probability distribution is a moment (often a higher degree central moment) that is normalized, typically by a power of the standard deviation, rendering the moment scale invariant. The shape of different probability distributions can be compared using standardized moments. Let X be a random variable with a probability distribution P and mean value (i.e. the first raw moment or moment about zero), the operator E denoting the expected value of X.
Pafnouti TchebychevPafnouti Lvovitch Tchebychev (en Пафнутий Львович Чебышёв), né le à Okatovo, près de Borovsk, et décédé le à Saint-Pétersbourg, est un mathématicien russe. Son nom a tout d'abord été transcrit en français Tchebychef et la forme Tchebycheff est aussi utilisée en français. Il est aussi transcrit Tschebyschef ou Tschebyscheff (formes allemandes), Chebyshov ou Chebyshev (formes anglo-saxonnes). Il est connu pour ses travaux dans les domaines des probabilités, des statistiques, et de la théorie des nombres.
Inégalité de Bienaymé-TchebychevEn théorie des probabilités, l'inégalité de Bienaymé-Tchebychev, est une inégalité de concentration permettant de montrer qu'une variable aléatoire prendra avec une faible probabilité une valeur relativement lointaine de son espérance. Ce résultat s'applique dans des cas très divers, nécessitant la connaissance de peu de propriétés (seules l'espérance et la variance doivent être connues), et permet de démontrer la loi faible des grands nombres.
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
Centilethumb|Définition du 95e centile d'une loi de Fisher-Snedecor En statistique descriptive, un centile (ou percentile) est une des 99 valeurs qui divisent une distribution de données en 100 parts égales de sorte que le p-ième centile soit la valeur supérieure à p % des autres valeurs. Les centiles sont un cas particulier des quantiles. Voir l'article "quantile" pour les méthodes. Un centile est calculé en tant que 100-quantile.
SigmaSigma (capitale Σ, minuscule σ, ς en fin de mot ; en grec σίγμα) est la lettre de l'alphabet grec, précédée par rhô et suivie par tau. Dérivée de la lettre shin x12px|shin de l'alphabet phénicien, elle est l'ancêtre de la lettre S de l'alphabet latin et de la lettre С de l'alphabet cyrillique. En grec moderne comme en grec ancien, la lettre sigma représente la consonne fricative alvéolaire sourde (). Ce son est voisé en devant ou . Dans le système de numération grecque, sigma vaut 200 ; par exemple représente le nombre 200.
Règle 68-95-99,7vignette|Illustration de la règle 68-95-99.7 (à partir d'une expérience réelle, ce qui explique l'asymétrie par rapport à la loi normale). En statistique, la règle 68-95-99,7 (ou règle des trois sigmas ou règle empirique) indique que pour une loi normale, presque toutes les valeurs se situent dans un intervalle centré autour de la moyenne et dont les bornes se situent à trois écarts-types de part et d'autre de celle-ci. Environ 68,27 % des valeurs se situent à moins d'un écart-type de la moyenne.
Nassim Nicholas TalebNassim Nicholas Taleb (نسيم نقولا طالب), né en 1960 à Amioun au Liban, est un écrivain, statisticien et essayiste spécialisé en épistémologie des probabilités et un praticien en mathématiques financières libano-américain. Il est actuellement professeur d'ingénierie du risque à l'Institut polytechnique de l'université de New York. Proche du mathématicien Benoît Mandelbrot et du psychologue Daniel Kahneman (prix Nobel d'économie 2002), Nassim Nicholas Taleb (dit « NNT ») est surnommé « le dissident de Wall Street » sur les marchés financiers internationaux.
Loi du χEn théorie des probabilités et en statistique, la loi du (prononcer « khi ») est une loi de probabilité continue. C'est la loi de la moyenne quadratique de k variables aléatoires indépendantes de loi normale centrée réduite, le paramètre k est le nombre de degrés de liberté. L'exemple le plus courant est la loi de Maxwell, pour k=3 degrés de liberté d'une loi du ; elle modélise la vitesse moléculaire (normalisée). Si sont k variables aléatoires indépendantes de loi normale avec pour moyenne et écart-type , alors la variable est de loi du .