Concept

Théorème de Pitot

vignette|AB + CD = (a + b) + (c + d) = (a + d) + (b + c) = AD + BC. En géométrie, le théorème de Pitot, démontré en 1725 par l'ingénieur français Henri Pitot, énonce que si un quadrilatère est circonscriptible (c'est-à-dire si ses quatre côtés sont tangents à un même cercle), alors la somme des longueurs de deux côtés opposés est égale à la somme des deux autres. Pour le démontrer, il suffit de décomposer ces quatre longueurs, selon les points de contact, en huit longueurs égales deux à deux . Pitot démontra la propriété analogue pour un polygone circonscriptible à un nombre pair de sommets, et l'étendit à un nombre impair de sommets. La réciproque fut démontrée par Jakob Steiner en 1846.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.