Personnes associées (22)
Wulfram Gerstner
Wulfram Gerstner is Director of the Laboratory of Computational Neuroscience LCN at the EPFL. His research in computational neuroscience concentrates on models of spiking neurons and spike-timing dependent plasticity, on the problem of neuronal coding in single neurons and populations, as well as on the link between biologically plausible learning rules and behavioral manifestations of learning. He teaches courses for Physicists, Computer Scientists, Mathematicians, and Life Scientists at the EPFL.  After studies of Physics in Tübingen and at the Ludwig-Maximilians-University Munich (Master 1989), Wulfram Gerstner spent a year as a visiting researcher in Berkeley. He received his PhD in theoretical physics from the Technical University Munich in 1993 with a thesis on associative memory and dynamics in networks of spiking neurons. After short postdoctoral stays at Brandeis University and the Technical University of Munich, he joined the EPFL in 1996 as assistant professor. Promoted to Associate Professor with tenure in February 2001, he is since August 2006 a full professor with double appointment in the School of Computer and Communication Sciences and the School of Life Sciences. Wulfram Gerstner has been invited speaker at numerous international conferences and workshops. He has served on the editorial board of the Journal of Neuroscience, Network: Computation in Neural Systems', Journal of Computational Neuroscience', and `Science'.
Alireza Karimi
Alireza Karimi received his B. Sc. and M. Sc. degrees in Electrical Engineering in 1987 and 1990, respectively, from Amir Kabir University (Tehran Polytechnic). Then he received his DEA and Ph. D. degrees both on Automatic Control from Institut National Polytechnique de Grenoble (INPG) in 1994 and 1997, respectively. He was Assistant Professor at Electrical Engineering Department of Sharif University of Technology in Teheran from 1998 to 2000. Then he joined Automatic Laboratory of Swiss Federal Institute of Technology at Lausanne, Switzerland. He is currently Professor of Automatic Control and the head of "Data-Driven Modelling and Control" group. His research interests include data-driven controller tuning and robust control with application to mechatronic systems and electrical grids.
Karl Aberer
Co-Founder of LinkAlong Sarl, 2017.Vice-president EPFL for Information Systems, 2012 –2016.Director of the Swiss National Centre for Mobile Information and Communication Systems NCCR MICS (mics.ch), 2005 -2012.Member of the Swiss Research and Technology Council SWTR, consulting the Swiss Federal government, 2004 - 2011.
Ali H. Sayed
Ali H. Sayed est doyen de la Faculté des sciences et techniques de l’ingénieur (STI) de l'EPFL, en Suisse, où il dirige également le laboratoire de systèmes adaptatifs.  Il a également été professeur émérite et président du département d'ingénierie électrique de l'UCLA. Il est reconnu comme un chercheur hautement cité et est membre de la US National Academy of Engineering. Il est également membre de l'Académie mondiale des sciences et a été président de l'IEEE Signal Processing Society en 2018 et 2019. Le professeur Sayed est auteur et co-auteur de plus de 570 publications et de six monographies. Ses recherches portent sur plusieurs domaines, dont les théories d'adaptation et d'apprentissage, les sciences des données et des réseaux, l'inférence statistique et les systèmes multi-agents, entre autres. Ses travaux ont été récompensés par plusieurs prix importants, notamment le prix Fourier de l'IEEE (2022), le prix de la société Norbert Wiener (2020) et le prix de l'éducation (2015) de la société de traitement des signaux de l'IEEE, le prix Papoulis (2014) de l'Association européenne de traitement des signaux, le Meritorious Service Award (2013) et le prix de la réalisation technique (2012) de la société de traitement des signaux de l'IEEE, le prix Terman (2005) de la société américaine de formation des ingénieurs, le prix de conférencier émérite (2005) de la société de traitement des signaux de l'IEEE, le prix Koweït (2003) et le prix Donald G. Fink (1996) de l'IEEE. Ses publications ont été récompensées par plusieurs prix du meilleur article de l'IEEE (2002, 2005, 2012, 2014) et de l'EURASIP (2015). Pour finir, Ali H. Sayed est aussi membre de l'IEEE, d'EURASIP et de l'American Association for the Advancement of Science (AAAS), l'éditeur de la revue Science.
Mohammad Amin Shokrollahi
Amin Shokrollahi has worked on a variety of topics, including coding theory, computational number theory and algebra, and computational/algebraic complexity theory. He is best known for his work on iterative decoding algorithms of graph based codes, an area in which he holds a number of granted and pending patents. He is the co-inventor of Tornado codes, and the inventor of Raptor codes. His codes have been standardized and successfully deployed in practical areas dealing with data transmission over lossy networks. Prior to joining EPFL, Amin Shokrollahi has held positions as the chief scientist of Digital Fountain, member of the technical staff at Bell Laboratories, senior researcher at the International Computer Science Insitute in Berkeley, and assistant professor at the department of computer science of the university of Bonn. He is a Fellow of the IEEE, and he was awarded the Best Paper Award of the IEEE IT Society in 2002 for his work on iterative decoding of LDPC code, the IEEE Eric Sumner Award in 2007 for the development of Fountain Codes, and the joint Communication Society/Information Theory Society best paper award of 2007 for his paper on Raptor Codes.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.