In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.
We introduce the notion of tame spectra and show it has a concrete algebraic description.
We then carry out a study of ∞-operads an ...
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat etale R-algebra are isomorphic. On the other hand, ...
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat étale R-algebra are isomorphic. On the other hand, ...
We construct liftings of reduction maps from complex multiplication (CM) points to supersingular points for general quaternion algebras and use these liftings to establish a precise correspondence between CM points on indefinite quaternion algebras with a ...
We prove upper bounds for Hecke-Laplace eigenfunctions on certain Riemannian manifolds X of arithmetic type, uniformly in the eigenvalue and the volume of the manifold. The manifolds under consideration are d-fold products of 2-spheres or 3-spheres, realiz ...
This thesis is concerned with the algebraic theory of hermitian forms. It is organized in two parts. The first, consisting of the first two chapters, deals with some descent properties of unimodular hermitian forms over central simple algebras with involut ...
Let K be a field with char(K) ≠ 2. The Witt-Grothendieck ring (K) and the Witt ring W (K) of K are both quotients of the group ring ℤ[𝓖(K)], where 𝓖(K) := K*/(K*)2 is the square class group of K. Since ℤ[𝓖(K)] is integra ...
Let X be a finite set and let k be a commutative ring. We consider the k-algebra of the monoid of all relations on X, modulo the ideal generated by the relations factorizing through a set of cardinality strictly smaller than Card(X), called inessential rel ...