Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Degré de liberté (génie mécanique)En physique, un solide rigide isolé dans l'espace peut se déplacer librement dans un mouvement qu'on peut décomposer suivant 6 transformations géométriques indépendantes (translations et rotations autour d'axes fixes dans trois directions d'une base liée à notre espace à 3 dimensions). Il en est de même d'un solide isolé par rapport à un autre référent. Si ces solides sont liés mécaniquement, certains de ces mouvements élémentaires sont impossibles.
Orientation (vector space)The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called .