Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore des modèles d'apprentissage automatique pour les neurosciences, en se concentrant sur la compréhension des fonctions cérébrales et la reconnaissance des objets centraux par le biais de réseaux neuronaux convolutifs.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.
Explore les méthodes stochastiques pour les systèmes quantiques, y compris la diagonalisation exacte, les méthodes variationnelles, les réseaux neuronaux et l'apprentissage automatique.
Explore les charges de travail d'apprentissage automatique, les couches DNN, les tableaux systolique et l'efficacité des accélérateurs spécialisés tels que les TPU.
Souligne l'importance d'une validation croisée prudente dans les réseaux neuronaux profonds, y compris la division des données et le concept de validation croisée K-fold.