In statistics, the delta method is a result concerning the approximate probability distribution for a function of an asymptotically normal statistical estimator from knowledge of the limiting variance of that estimator. The delta method was derived from propagation of error, and the idea behind was known in the early 20th century. Its statistical application can be traced as far back as 1928 by T. L. Kelley. A formal description of the method was presented by J. L. Doob in 1935. Robert Dorfman also described a version of it in 1938. While the delta method generalizes easily to a multivariate setting, careful motivation of the technique is more easily demonstrated in univariate terms. Roughly, if there is a sequence of random variables Xn satisfying where θ and σ2 are finite valued constants and denotes convergence in distribution, then for any function g satisfying the property that its first derivative, evaluated at , exists and is non-zero valued. Demonstration of this result is fairly straightforward under the assumption that g′(θ) is continuous. To begin, we use the mean value theorem (i.e.: the first order approximation of a Taylor series using Taylor's theorem): where lies between Xn and θ. Note that since and , it must be that and since g′(θ) is continuous, applying the continuous mapping theorem yields where denotes convergence in probability. Rearranging the terms and multiplying by gives Since by assumption, it follows immediately from appeal to Slutsky's theorem that This concludes the proof. Alternatively, one can add one more step at the end, to obtain the order of approximation: This suggests that the error in the approximation converges to 0 in probability. By definition, a consistent estimator B converges in probability to its true value β, and often a central limit theorem can be applied to obtain asymptotic normality: where n is the number of observations and Σ is a (symmetric positive semi-definite) covariance matrix. Suppose we want to estimate the variance of a scalar-valued function h of the estimator B.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.