Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Couvre la quantification des distributions de probabilité, le regroupement statistique des moyennes k, l'estimation moyenne, les méthodes de regroupement robustes et les questions de recherche ouvertes.
Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.