Patron (géométrie)En géométrie, le patron d'un polyèdre est une figure géométrique plane en un seul morceau qui permet de reconstituer le polyèdre après plusieurs pliages (au niveau de certaines arêtes, les autres apparaissant par jonction des bords du patron). Le terme de patron est à prendre ici dans son deuxième sens : celui de modèle pour construire un objet. Développer un polyèdre consiste à rabattre les différentes faces du polyèdre dans un même plan par découpage selon les arêtes.
Antiprisme carréEn géométrie, l'antiprisme carré est le deuxième solide de l'ensemble infini des antiprismes. Celui-ci peut être regardé comme un prisme carré droit dont on a opéré une fraction de tour sur une des deux faces carrées supérieure ou inférieure pour faire un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces carrées supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
Antiprisme hexagonalEn géométrie, l'antiprisme hexagonal est le quatrième solide de l'ensemble infini des antiprismes. Celui-ci peuvent être regardé comme un prisme hexagonal dont on a opéré une fraction de tour sur une des deux faces supérieure ou inférieure pour faire coïncider un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces hexagonales supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
HyperrectangleIn geometry, an orthotope (also called a hyperrectangle or a box) is the generalization of a rectangle to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of intervals. If all of the edges are equal length, it is a hypercube. A hyperrectangle is a special case of a parallelotope. A three-dimensional orthotope is also called a right rectangular prism, rectangular cuboid, or rectangular parallelepiped. A four-dimensional orthotope is likely a hypercuboid.
TétrahémihexaèdreEn géométrie, le tétrahémihexaèdre, appelé aussi heptaèdre de Reinhardt (du nom de Curt Reinhardt, qui l'a inventé en 1885) est un polyèdre uniforme non convexe, indexé sous le nom U4. Il a 6 sommets, 12 arêtes, et 7 faces : 4 triangulaires (qui font partie de celles de l'octaèdre régulier) et 3 carrées. C'est le seul polyèdre uniforme non prismatique avec un nombre impair de faces. Il est le seul polyèdre uniforme avec une caractéristique d'Euler égale à 1 et est par conséquent une représentation du plan projectif réel très similaire à la surface romaine.
Tétraèdre équifacialEn géométrie, un tétraèdre équifacial, ou disphénoïde (du grec sphenoeides, « en forme de coin »), est un tétraèdre (non plan) dont les quatre faces sont des triangles isométriques. Une condition équivalente est que les arêtes opposées soient de même longueur. Il a été signalé dans les Annales de Gergonne dès 1810, puis beaucoup étudié par les géomètres des s. Le tétraèdre régulier est équifacial mais un tétraèdre équifacial peut avoir des arêtes de trois longueurs différentes.