In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry (equivalently, 180° rotational symmetry), the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.
There is a nonconvex uniform polyhedron with a similar name: the nonconvex great rhombicuboctahedron.
The Cartesian coordinates for the vertices of a truncated cuboctahedron having edge length 2 and centered at the origin are all the permutations of:
(±1, ±(1 + ), ±(1 + 2)).
The area A and the volume V of the truncated cuboctahedron of edge length a are:
The truncated cuboctahedron is the convex hull of a rhombicuboctahedron with cubes above its 12 squares on 2-fold symmetry axes. The rest of its space can be dissected into 6 square cupolas below the octagons, and 8 triangular cupolas below the hexagons.
A dissected truncated cuboctahedron can create a genus 5, 7, or 11 Stewart toroid by removing the central rhombicuboctahedron, and either the 6 square cupolas, the 8 triangular cupolas, or the 12 cubes respectively. Many other lower symmetry toroids can also be constructed by removing the central rhombicuboctahedron, and a subset of the other dissection components. For example, removing 4 of the triangular cupolas creates a genus 3 toroid; if these cupolas are appropriately chosen, then this toroid has tetrahedral symmetry.
There is only one uniform coloring of the faces of this polyhedron, one color for each face type.
A 2-uniform coloring, with tetrahedral symmetry, exists with alternately colored hexagons.
The truncated cuboctahedron has two special orthogonal projections in the A2 and B2 Coxeter planes with [6] and [8] projective symmetry, and numerous [2] symmetries can be constructed from various projected planes relative to the polyhedron elements.