Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
The corner transfer matrix renormalization group (CTMRG) algorithm has been extensively used to investigate both classical and quantum two-dimensional (2D) lattice models. The convergence of the algorithm can strongly vary from model to model depending on ...
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...
We consider the phase diagram of the most general SU(4)-symmetric two-site Hamiltonian for a system of two fermions per site (i.e., self-conjugate 6 representation) on the square lattice. It is known that this model hosts magnetic phases breaking SU(4) sym ...
We study the Neel to fourfold columnar valence bond solid (cVBS) quantum phase transition in a sign-free S = 1 square-lattice model. This is the same kind of transition that for S = 1/2 has been argued to realize the prototypical deconfined critical point. ...
Motivated by recent experimental progress in the context of ultra-cold multi-colour fermionic atoms in optical lattices, this thesis investigates the properties of the antiferromagnetic SU(N) Heisenberg models with fully antisymmetric irreducible represent ...
The investigation of the static and dynamic structural properties of colloidal systems relies on techniques capable of atomic resolution in real space and femtosecond resolution in time. Recently, the cross-correlation function (CCF) analysis of both X-ray ...
Hexagonal lattice systems (e.g., triangular, honeycomb, kagome) possess a multidimensional irreducible representation corresponding to d(x2-y2) and d(xy) symmetry. Consequently, various unconventional phases that combine these d-wave representations can oc ...
We study the influence of the band structure on the symmetry and superconducting transition temperature in the (solvable) weak-coupling limit of the repulsive Hubbard model. Among other results we find that (1) as a function of increasing nematicity, start ...
We present a numerical study of the SU(N) Heisenberg model with the fundamental representation at each site for the kagome lattice (for N = 3) and the checkerboard lattice (for N = 4), which are the line graphs of the honeycomb and square lattices and thus ...