Publications associées (25)

Fitting summary statistics of neural data with a differentiable spiking network simulator

Wulfram Gerstner, Johanni Michael Brea, Alireza Modirshanechi, Shuqi Wang

Fitting network models to neural activity is an important tool in neuroscience. A popular approach is to model a brain area with a probabilistic recurrent spiking network whose parameters maximize the likelihood of the recorded activity. Although this is w ...
2021

Robust Biophysical Parameter Estimation with a Neural Network Enhanced Hamiltonian Markov Chain Monte Carlo Sampler

Jean-Philippe Thiran, Erick Jorge Canales Rodriguez, Gabriel Girard, Marco Pizzolato, Jonathan Rafael Patino Lopez, Thomas Yu

Probabilistic parameter estimation in model fitting runs the gamut from maximum likelihood or maximum a posteriori point estimates from optimization to Markov Chain Monte Carlo (MCMC) sampling. The latter, while more computationally intensive, generally pr ...
SPRINGER INTERNATIONAL PUBLISHING AG2019

Estimation of groundwater storage from seismic data using deep learning

Jan Sickmann Hesthaven

We investigate the feasibility of the use of convolutional neural networks to estimate the amount of groundwater stored in the aquifer and delineate water-table level from active-source seismic data. The seismic data to train and test the neural networks a ...
Wiley2019

Approximate maximum likelihood estimation for population genetic inference

Gregory Bruce Ewing

In many population genetic problems, parameter estimation is obstructed by an intractable likelihood function. Therefore, approximate estimation methods have been developed, and with growing computational power, sampling-based methods became popular. Howev ...
De Gruyter2017

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.